-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_alert.py
320 lines (264 loc) · 13.1 KB
/
run_alert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import numpy as np
import pandas as pd
import pickle
import yaml
import os
from ortools.sat.python import cp_model
import random
from joblib import Parallel, delayed
def cat_checker(data, features, cat_dict):
new_data = data.copy()
for feature in features:
if new_data[feature].dtype != 'category':
new_data[feature] = pd.Categorical(new_data[feature].values, categories=cat_dict[feature])
elif new_data[feature].dtype.categories.to_list() != cat_dict[feature]:
new_data[feature] = pd.Categorical(new_data[feature].values, categories=cat_dict[feature])
return new_data
def full_auto_func(capacities, batches, testset, env, model, scen, l):
print(f'solving {env}/{scen}-l_{l}: fullreject')
if os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env):
return
assignments = pd.DataFrame(columns = ['assignment'])
results = pd.DataFrame(columns = ['prediction'])
for i in np.arange(1,batches['batch'].max()+1):
cases = testset.loc[batches.loc[batches['batch'] == i]['case_id'],:]
for ix in cases.index:
assignments.loc[ix] = 'auto-reject'
results.loc[ix] = 1
if not os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env):
os.makedirs(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env)
assignments = assignments.astype('object')
assignments.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env +'/assignments.parquet')
results.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env +'/results.parquet')
return assignments, results
def full_model_func(capacities, batches, testset, expert_preds, env, model, scen, l):
print(f'solving {env}/{scen}-l_{l}: fullauto')
if os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env):
return
assignments = pd.DataFrame(columns = ['assignment'])
results = pd.DataFrame(columns = ['prediction'])
for i in np.arange(1,batches['batch'].max()+1):
cases = testset.loc[batches.loc[batches['batch'] == i]['case_id'],:]
for ix in cases.index:
assignments.loc[ix] = 'model#0'
results.loc[ix] = expert_preds.loc[ix,'model#0']
if not os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env):
os.makedirs(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env)
assignments = assignments.astype('object')
assignments.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env +'/assignments.parquet')
results.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env +'/results.parquet')
return assignments, results
def rand_deferral_func(capacities, batches, testset, expert_preds, env, model, scen, l):
print(f'solving {env}/{scen}-l_{l}: rand')
if os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/{env}/'):
return
assignments = pd.DataFrame(columns = ['assignment'])
results = pd.DataFrame(columns = ['prediction'])
for i in np.arange(1,batches['batch'].max()+1):
c = capacities.loc[capacities['batch_id'] == i,:].iloc[0]
c.loc['model#0'] = c['batch_size'] - c[2:].sum()
cases = testset.loc[batches.loc[batches['batch'] == i]['case_id'],:]
experts = expert_preds.columns.to_list()
for ix in cases.index:
done = 0
while (done != 1):
choice = random.choice(experts)
if c[choice]>0:
c[choice] -= 1
assignments.loc[ix] = choice
results.loc[ix] = expert_preds.loc[ix, choice]
done = 1
else:
experts.remove(choice)
if len(choice) == 0:
done = 1
if not os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env):
os.makedirs(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env)
assignments = assignments.astype('object')
assignments.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env +'/assignments.parquet')
results.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{model}/' + env +'/results.parquet')
return assignments, results
def ova_deferral_func(capacities, batches, testset, expert_preds, model_preds, env, model, seed, scen, l):
print(f'solving {env}/{scen}-l_{l}: ova')
if os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model}/' + env):
return
assignments = pd.DataFrame(columns = ['assignment'])
results = pd.DataFrame(columns = ['prediction'])
for i in np.arange(1,batches['batch'].max()+1):
c = capacities.loc[capacities['batch_id'] == i,:].iloc[0]
c.loc['model#0'] = c['batch_size'] - c[2:].sum()
cases = testset.loc[batches.loc[batches['batch'] == i]['case_id'],:]
preds = model_preds.loc[cases.index]
for ix, row in preds.iterrows():
sorted = row.sort_values(ascending = False)
for choice in sorted.index:
if c[choice]>0:
c[choice] -= 1
assignments.loc[ix] = choice
results.loc[ix] = expert_preds.loc[ix, choice]
break
if not os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model}/' + env):
os.makedirs(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model}/' + env)
assignments = assignments.astype('object')
assignments.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model}/' + env +'/assignments.parquet')
results.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model}/' + env +'/results.parquet')
return assignments, results
def deccaf_cp_deferral_func(capacities, batches, testset, expert_preds, model_preds, env, model, seed, scen, l):
print(f'solving {env}/{scen}-l_{l}: deccaf')
if os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model}/{env}/'):
return
model_name = model
assignments = pd.DataFrame(columns = ['assignment'])
results = pd.DataFrame(columns = ['prediction'])
for b in np.arange(1,batches['batch'].max()+1):
c = capacities.loc[capacities['batch_id'] == b,:].iloc[0]
c.loc['model#0'] = c['batch_size'] - c[2:].sum()
cases = testset.loc[batches.loc[batches['batch'] == b]['case_id'],:]
preds = model_preds.loc[cases.index]
cost_matrix_df = preds.T
for d in c.index:
if c.loc[d] == 0:
cost_matrix_df = cost_matrix_df.drop(index=d)
cost_matrix = cost_matrix_df.values
num_workers, num_tasks = cost_matrix.shape
workers = list(cost_matrix_df.index)
model = cp_model.CpModel()
x = []
for i in range(num_workers):
t = []
for j in range(num_tasks):
t.append(model.NewBoolVar(f'x[{i},{j}]'))
x.append(t)
# capacity constraints
for i in range(num_workers):
model.Add(sum([x[i][j] for j in range(num_tasks)]) == c[workers[i]])
# Each task is assigned to exactly one worker.
for j in range(num_tasks):
model.AddExactlyOne(x[i][j] for i in range(num_workers))
objective_terms = []
for i in range(num_workers):
for j in range(num_tasks):
objective_terms.append(cost_matrix[i, j] * x[i][j])
model.Minimize(sum(objective_terms))
#This sum(objective_terms) is the loss of the batch.
solver = cp_model.CpSolver()
# solver.parameters.log_search_progress = True
solver.parameters.max_time_in_seconds = 60.0
status = solver.Solve(model)
if not status == cp_model.OPTIMAL and not status == cp_model.FEASIBLE:
print('Solution not found!')
return None
print('Batch solved')
for j in range(num_tasks):
ix = cost_matrix_df.columns.to_list()[j]
for i in range(num_workers):
if solver.BooleanValue(x[i][j]):
assignments.loc[ix] = workers[i]
results.loc[ix] = expert_preds.loc[ix, workers[i]]
if not os.path.isdir(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model_name}/' + env):
os.makedirs(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model_name}/' + env)
assignments = assignments.astype('object')
assignments.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model_name}/' + env +'/assignments.parquet')
results.to_parquet(f'../../Data_and_models/deferral/def_results_alert/{scen}-l_{l}/{seed}/{model_name}/' + env +'/results.parquet')
return assignments, results
with open('../data/dataset_cfg.yaml', 'r') as infile:
data_cfg = yaml.safe_load(infile)
cat_dict = data_cfg['categorical_dict']
with open('cfg.yaml', 'r') as infile:
cfg = yaml.safe_load(infile)
costs_l = cfg['costs']
for scen in os.listdir('../../Data_and_models/data/alerts'):
if len(scen.split('-')) == 3:
sub = True
else:
sub = False
for l in costs_l:
if sub and (l not in cfg['run_sub']):
continue
scen = scen.split('.parquet')[0]
alerts = pd.read_parquet(f'../../Data_and_models/data/alerts/{scen}.parquet')
exp_pred = (pd.read_parquet(f'../../Data_and_models/experts/{scen}-l_{l}/deployment_predictions.parquet')>=0.5).astype(int)
test = alerts.loc[alerts['month'] == 7]
Classes = np.array(['fn', 'fp', 'tn', 'tp'])
CATEGORICAL_COLS = data_cfg['data_cols']['categorical']
with open(f'../../Data_and_models/deferral/test_preds/{scen}-l_{l}/deccaf.pkl', 'rb') as fp:
deccaf_model_preds = pickle.load(fp)
with open(f'../../Data_and_models/deferral/test_preds/{scen}-l_{l}/ova.pkl', 'rb') as fp:
ova_model_preds = pickle.load(fp)
a = dict()
for direc in os.listdir(f'../../Data_and_models/testbed/{scen}-l_{l}/test'):
if os.path.isfile(f'../../Data_and_models/testbed/{scen}-l_{l}/test/' + direc):
continue
a[direc] = dict()
a[direc]['bat'] = pd.read_csv(f'../../Data_and_models/testbed/{scen}-l_{l}/test/' + direc + '/batches.csv')
a[direc]['cap'] = pd.read_csv(f'../../Data_and_models/testbed/{scen}-l_{l}/test/' + direc + '/capacity.csv')
for seed in deccaf_model_preds:
Parallel(n_jobs=5)(
delayed(deccaf_cp_deferral_func)(
a[env]['cap'],
a[env]['bat'],
test,
exp_pred,
1-deccaf_model_preds[seed],
env,
f'DeCCaF',
seed,
scen,
l
)
for env in a
)
for seed in ova_model_preds:
Parallel(n_jobs=5)(
delayed(ova_deferral_func)(
a[env]['cap'],
a[env]['bat'],
test,
exp_pred,
ova_model_preds[seed],
env,
f'OvA',
seed,
scen,
l
)
for env in a
)
Parallel(n_jobs=5)(
delayed(full_auto_func)(
a[env]['cap'],
a[env]['bat'],
test,
env,
f'Full_Rej',
scen,
l
)
for env in a
)
Parallel(n_jobs=5)(
delayed(full_model_func)(
a[env]['cap'],
a[env]['bat'],
test,
exp_pred,
env,
f'Only_Classifier',
scen,
l
)
for env in a
)
Parallel(n_jobs=5)(
delayed(rand_deferral_func)(
a[env]['cap'],
a[env]['bat'],
test,
exp_pred,
env,
f'Random',
scen,
l
)
for env in a
)