-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuse.py
48 lines (38 loc) · 1.21 KB
/
use.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
from model import DCGAN
model = DCGAN()
saver = tf.train.Saver()
mnist = input_data.read_data_sets("MNIST_data/")
with tf.Session() as sess:
saver.restore(sess, "model/mnist-demo.ckpt-500")
print("Model restored.")
random_array = np.random.rand(model.batch_size, 100)
mask = np.full(shape=(model.batch_size,), fill_value=0)
classes = np.linspace(0, model.batch_size - 1, model.batch_size).astype(np.int32)
classes[:model.n_classes] = list(range(model.n_classes))
feed = {
model.label: classes,
model.mask: mask,
model.random: random_array
}
output = sess.run(
[model.generations],
feed_dict=feed)
images = output[0]
image = images[0].flatten()
train = mnist.train.images[mnist.train.labels == 0]
bestnorm = float("inf")
best_i = -1
for i in range(train.shape[0]):
norm = np.linalg.norm(image - train[i])
if norm < bestnorm:
bestnorm = norm
best_i = i
print(bestnorm)
a = np.reshape(image, [28, 28])
b = np.reshape(train[best_i], [28, 28])
plt.imshow(1 - np.hstack([a, b]), cmap="Greys")
plt.show()