-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprint_results.py
80 lines (59 loc) · 2.54 KB
/
print_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import json
from tabulate import tabulate
from constants import METHOD_NAMES, METRIC_NAMES
hundredX = lambda mu, std, n: "%.2f (%.2f)" % (mu*100, std*100)
format_fns = {
'IM2': hundredX,
'Oracle': hundredX,
'TargetClassValidity': hundredX,
'FID': lambda mu, std, n: "%.2f" % mu
}
def fn(args, cfg):
out_path = os.path.join(cfg.get('checkpoints', 'output_dir'), 'results.json')
if not os.path.exists(out_path):
raise IOError("Result file does not exist, %s" % out_path)
with open(out_path, 'r') as f:
out_results = json.load(f)
# Print results in table.
metric_names = [m for m in METRIC_NAMES if m != 'LabelVariationScore']
row_lookup = {m: i+1 for i, m in enumerate(METHOD_NAMES)}
cnt = 1
col_lookup = {}
recorded_metrics = []
for metric in metric_names:
if metric in out_results:
col_lookup[metric] = cnt
recorded_metrics.append(metric)
cnt += 1
results = [['Method \\ Metric'] + recorded_metrics]
results.extend( [[m] + ['']*len(recorded_metrics) for m in METHOD_NAMES] )
for metric, col in col_lookup.items():
for score in out_results[metric]:
row = row_lookup[score['method']]
mu, ci, n = score['scores']
default_fmt = lambda mu, std, n: '%.2f (%.2f)' % (mu, ci)
results[row][col] = format_fns.get(metric, default_fmt)(mu, ci, n)
print("# # " * 10)
print("# " + cfg.get('data', 'dataset').upper())
print("# # " * 10)
print(tabulate(results, headers='firstrow'))
# Print LVS in separate table
if 'LabelVariationScore' in out_results:
print("\n" + "- - " * 10 + 'LVS' + " - -" * 10 + "\n")
lvs_scores = out_results['LabelVariationScore']
rows = len(lvs_scores)
cols = len(lvs_scores[0]['scores'])
if cols == 5: # Celeba
label_names = ['Heavy_Makeup', 'High_Cheekbones', 'Attractive', 'Wearing_Lipstick', 'Smiling']
else: # FakeMNIST
label_names = ['FakeMNIST', 'MNIST']
results = [['Method \\ Class Label'] + label_names]
results.extend( [[m] + [''] * cols for m in METHOD_NAMES] )
for lvs in lvs_scores:
row = row_lookup[lvs['method']]
for i, l in enumerate(label_names):
col = i+1
mu, ci, n = lvs['scores'][l]
results[row][col] = "%.2f (%.2f)" % (mu, ci)
print(tabulate(results, headers='firstrow'))