-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproblem_unittests.py
208 lines (139 loc) · 7.15 KB
/
problem_unittests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import numpy as np
import tensorflow as tf
import random
from unittest.mock import MagicMock
def _print_success_message():
print('Tests Passed')
def test_folder_path(cifar10_dataset_folder_path):
assert cifar10_dataset_folder_path is not None,\
'Cifar-10 data folder not set.'
assert cifar10_dataset_folder_path[-1] != '/',\
'The "/" shouldn\'t be added to the end of the path.'
assert os.path.exists(cifar10_dataset_folder_path),\
'Path not found.'
assert os.path.isdir(cifar10_dataset_folder_path),\
'{} is not a folder.'.format(os.path.basename(cifar10_dataset_folder_path))
train_files = [cifar10_dataset_folder_path + '/data_batch_' + str(batch_id) for batch_id in range(1, 6)]
other_files = [cifar10_dataset_folder_path + '/batches.meta', cifar10_dataset_folder_path + '/test_batch']
missing_files = [path for path in train_files + other_files if not os.path.exists(path)]
assert not missing_files,\
'Missing files in directory: {}'.format(missing_files)
print('All files found!')
def test_normalize(normalize):
test_shape = (np.random.choice(range(1000)), 32, 32, 3)
test_numbers = np.random.choice(range(256), test_shape)
normalize_out = normalize(test_numbers)
assert type(normalize_out).__module__ == np.__name__,\
'Not Numpy Object'
assert normalize_out.shape == test_shape,\
'Incorrect Shape. {} shape found'.format(normalize_out.shape)
assert normalize_out.max() <= 1 and normalize_out.min() >= 0,\
'Incorect Range. {} to {} found'.format(normalize_out.min(), normalize_out.max())
_print_success_message()
def test_one_hot_encode(one_hot_encode):
test_shape = np.random.choice(range(1000))
test_numbers = np.random.choice(range(10), test_shape)
one_hot_out = one_hot_encode(test_numbers)
assert type(one_hot_out).__module__ == np.__name__,\
'Not Numpy Object'
assert one_hot_out.shape == (test_shape, 10),\
'Incorrect Shape. {} shape found'.format(one_hot_out.shape)
n_encode_tests = 5
test_pairs = list(zip(test_numbers, one_hot_out))
test_indices = np.random.choice(len(test_numbers), n_encode_tests)
labels = [test_pairs[test_i][0] for test_i in test_indices]
enc_labels = np.array([test_pairs[test_i][1] for test_i in test_indices])
new_enc_labels = one_hot_encode(labels)
assert np.array_equal(enc_labels, new_enc_labels),\
'Encodings returned different results for the same numbers.\n' \
'For the first call it returned:\n' \
'{}\n' \
'For the second call it returned\n' \
'{}\n' \
'Make sure you save the map of labels to encodings outside of the function.'.format(enc_labels, new_enc_labels)
for one_hot in new_enc_labels:
assert (one_hot==1).sum() == 1,\
'Each one-hot-encoded value should include the number 1 exactly once.\n' \
'Found {}\n'.format(one_hot)
assert (one_hot==0).sum() == len(one_hot)-1,\
'Each one-hot-encoded value should include zeros in all but one position.\n' \
'Found {}\n'.format(one_hot)
_print_success_message()
def test_nn_image_inputs(neural_net_image_input):
image_shape = (32, 32, 3)
nn_inputs_out_x = neural_net_image_input(image_shape)
assert nn_inputs_out_x.get_shape().as_list() == [None, image_shape[0], image_shape[1], image_shape[2]],\
'Incorrect Image Shape. Found {} shape'.format(nn_inputs_out_x.get_shape().as_list())
assert nn_inputs_out_x.op.type == 'Placeholder',\
'Incorrect Image Type. Found {} type'.format(nn_inputs_out_x.op.type)
assert nn_inputs_out_x.name == 'x:0', \
'Incorrect Name. Found {}'.format(nn_inputs_out_x.name)
print('Image Input Tests Passed.')
def test_nn_label_inputs(neural_net_label_input):
n_classes = 10
nn_inputs_out_y = neural_net_label_input(n_classes)
assert nn_inputs_out_y.get_shape().as_list() == [None, n_classes],\
'Incorrect Label Shape. Found {} shape'.format(nn_inputs_out_y.get_shape().as_list())
assert nn_inputs_out_y.op.type == 'Placeholder',\
'Incorrect Label Type. Found {} type'.format(nn_inputs_out_y.op.type)
assert nn_inputs_out_y.name == 'y:0', \
'Incorrect Name. Found {}'.format(nn_inputs_out_y.name)
print('Label Input Tests Passed.')
def test_nn_keep_prob_inputs(neural_net_keep_prob_input):
nn_inputs_out_k = neural_net_keep_prob_input()
assert nn_inputs_out_k.get_shape().ndims is None,\
'Too many dimensions found for keep prob. Found {} dimensions. It should be a scalar (0-Dimension Tensor).'.format(nn_inputs_out_k.get_shape().ndims)
assert nn_inputs_out_k.op.type == 'Placeholder',\
'Incorrect keep prob Type. Found {} type'.format(nn_inputs_out_k.op.type)
assert nn_inputs_out_k.name == 'keep_prob:0', \
'Incorrect Name. Found {}'.format(nn_inputs_out_k.name)
print('Keep Prob Tests Passed.')
def test_con_pool(conv2d_maxpool):
test_x = tf.placeholder(tf.float32, [None, 32, 32, 5])
test_num_outputs = 10
test_con_k = (2, 2)
test_con_s = (4, 4)
test_pool_k = (2, 2)
test_pool_s = (2, 2)
conv2d_maxpool_out = conv2d_maxpool(test_x, test_num_outputs, test_con_k, test_con_s, test_pool_k, test_pool_s)
assert conv2d_maxpool_out.get_shape().as_list() == [None, 4, 4, 10],\
'Incorrect Shape. Found {} shape'.format(conv2d_maxpool_out.get_shape().as_list())
_print_success_message()
def test_flatten(flatten):
test_x = tf.placeholder(tf.float32, [None, 10, 30, 6])
flat_out = flatten(test_x)
assert flat_out.get_shape().as_list() == [None, 10*30*6],\
'Incorrect Shape. Found {} shape'.format(flat_out.get_shape().as_list())
_print_success_message()
def test_fully_conn(fully_conn):
test_x = tf.placeholder(tf.float32, [None, 128])
test_num_outputs = 40
fc_out = fully_conn(test_x, test_num_outputs)
assert fc_out.get_shape().as_list() == [None, 40],\
'Incorrect Shape. Found {} shape'.format(fc_out.get_shape().as_list())
_print_success_message()
def test_output(output):
test_x = tf.placeholder(tf.float32, [None, 128])
test_num_outputs = 40
output_out = output(test_x, test_num_outputs)
assert output_out.get_shape().as_list() == [None, 40],\
'Incorrect Shape. Found {} shape'.format(output_out.get_shape().as_list())
_print_success_message()
def test_conv_net(conv_net):
test_x = tf.placeholder(tf.float32, [None, 32, 32, 3])
test_k = tf.placeholder(tf.float32)
logits_out = conv_net(test_x, test_k)
assert logits_out.get_shape().as_list() == [None, 10],\
'Incorrect Model Output. Found {}'.format(logits_out.get_shape().as_list())
print('Neural Network Built!')
def test_train_nn(train_neural_network):
mock_session = tf.Session()
test_x = np.random.rand(128, 32, 32, 3)
test_y = np.random.rand(128, 10)
test_k = np.random.rand(1)
test_optimizer = tf.train.AdamOptimizer()
mock_session.run = MagicMock()
train_neural_network(mock_session, test_optimizer, test_k, test_x, test_y)
assert mock_session.run.called, 'Session not used'
_print_success_message()