-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentiment_with_gen.py
157 lines (101 loc) · 4.09 KB
/
sentiment_with_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import shutil
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
from tensorflow import keras
from official.nlp import optimization
import numpy as np
from sklearn.model_selection import train_test_split
import collections
def main():
print("main")
tf.get_logger().setLevel('ERROR')
AUTOTUNE = tf.data.AUTOTUNE
batch_size = 32
seed = 55
url = 'https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'
dataset = tf.keras.utils.get_file('aclImdb_v1.tar.gz', url,
untar=True, cache_dir='./data',
cache_subdir='')
dataset_dir = os.path.join(os.path.dirname(dataset), 'aclImdb')
train_dir = os.path.join(dataset_dir, 'train')
remove_dir = os.path.join(train_dir, 'unsup')
shutil.rmtree(remove_dir)
raw_train_ds = tf.keras.utils.text_dataset_from_directory(
'data/aclImdb/train',
batch_size=batch_size,
validation_split=0.2,
subset='training',
seed=seed
)
class_names = raw_train_ds.class_names
train_ds = raw_train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = tf.keras.utils.text_dataset_from_directory(
'data/aclImdb/train',
batch_size=batch_size,
validation_split=0.2,
subset='validation',
seed=seed
)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
test_ds = tf.keras.utils.text_dataset_from_directory(
'data/aclImdb/test',
batch_size=batch_size)
test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
xs = np.array([])
ys = np.array([])
for x, y in raw_train_ds:
#print(x)
#print(y)
xs = np.concatenate([xs, x])
ys = np.concatenate([ys, y])
print(xs.shape)
class_names = raw_train_ds.class_names
use_generated = False
if use_generated:
raw_generated = keras.utils.text_dataset_from_directory(
'data/imdb_generated',
seed=seed
)
generated_xs = np.array([])
generated_ys = np.array([])
for x, y in raw_generated:
generated_xs = np.concatenate([generated_xs, x])
generated_ys = np.concatenate([generated_ys, y])
x_train = np.concatenate([x_train, generated_xs])
y_train = np.concatenate([y_train, generated_ys])
print("Num of duplicates ", len([item for item, count in collections.Counter(list(generated_xs)).items() if count > 1]))
classfier = build_classfier_model()
loss = keras.losses.BinaryCrossentropy(from_logits=True)
metrics = tf.metrics.BinaryAccuracy()
epochs = 10
steps_per_epoch = len(x_train)
num_trains_steps = steps_per_epoch * epochs
num_warmup_steps = int(0.1*num_trains_steps)
init_lr = 3e-5
optimizer = optimization.create_optimizer(
init_lr=init_lr,
num_train_steps=num_trains_steps,
num_warmup_steps=num_warmup_steps,
optimizer_type='adamw'
)
classfier.compile(optimizer=optimizer, loss=loss, metrics=metrics)
history = classfier.fit(x_train, y_train, epochs=epochs, validation_data=val_ds, batch_size=batch_size)
loss, accuracy = classfier.evaluate(x_test, y_test, batch_size=batch_size)
print(f'Loss: {loss}')
print(f'Accuracy: {accuracy}')
def build_classfier_model():
bert_preprocess_model_link = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
bert_preprocess_model = hub.KerasLayer(bert_preprocess_model_link, name="preprocess")
bert_model_link = "https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1"
bert_model = hub.KerasLayer(bert_model_link, trainable=True, name='BERT_encoder')
text_input = keras.layers.Input(shape=(), dtype=tf.string, name='text')
encoder_inputs = bert_preprocess_model(text_input)
outputs = bert_model(encoder_inputs)
net = outputs['pooled_output']
net = keras.layers.Dropout(0.1)(net)
net = keras.layers.Dense(1, activation=None, name='classfier')(net)
return keras.Model(text_input, net)
if __name__ == '__main__':
main()