-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRUN.txt
99 lines (77 loc) · 3.96 KB
/
RUN.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Training command
python main.py --verbose --model-dir="experiments/base_model/generator" train \
--train-data-dir="data/train" \
--eval-data-dir="data/benchmark/kodak" \
--num-parallel-calls=4 \
--batchsize=4 \
--epochs=1000 \
--save-summary-steps=10 \
--random-seed=230 \
--allow-growth=True \
--xla=False \
--save-profiling-steps=0 \
--log-verbosity="INFO"
python main.py --verbose --model-dir="experiments/base_model/generator" compress overfit.png
// benchmarking
python main.py --verbose --model-dir="experiments/base_model/generator" benchmark \
--allow-growth=False
Look at the results folder for running configs for below experiments
_____________________________________________________________________________________________
--> Layer Modifications.
/// base model
J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston:
"Variational Image Compression with a Scale Hyperprior"
Int. Conf. on Learning Representations (ICLR), 2018
https://arxiv.org/abs/1802.01436
/// mod1
Contains the modifications to architecture from the paper
J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston:
"Variational Image Compression with a Scale Hyperprior"
Int. Conf. on Learning Representations (ICLR), 2018
https://arxiv.org/abs/1802.01436
Modifications :
1. Mobile-Bottleneck Residual Convolutional Layer (EfficientNet)
/// mod2
Contains the modifications to architecture from the paper
J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston:
"Variational Image Compression with a Scale Hyperprior"
Int. Conf. on Learning Representations (ICLR), 2018
https://arxiv.org/abs/1802.01436
Modifications :
1. Mobile-Bottleneck Residual Convolutional Layer (EfficientNet)
2. EfficientV1 like architecture for downsampling and its inverse for upsampling using SignalConv Blocks for down/up-sampling and GDN/IGDN for activations.
/// mod3
Contains the modifications to architecture from the paper
J. Ballé, D. Minnen, S. Singh, S.J. Hwang, N. Johnston:
"Variational Image Compression with a Scale Hyperprior"
Int. Conf. on Learning Representations (ICLR), 2018
https://arxiv.org/abs/1802.01436
Modifications :
1. Mobile-Bottleneck Residual Convolutional Layer (EfficientNet)
2. EfficientV1 like architecture for downsampling and its inverse for upsampling using basic using basic Conv-Batch-Relu layers
for downsampling and ICNR_Subpixel-Batch-Relu for upsampling.
/// mod4
same as mod3 but no efficient-net architecture.
--> Compression Modifications.
//// variant1
same as mod3, but uses only scale based hyperprior, similar to
"Variational Image Compression with a Scale Hyperprior"
Int. Conf. on Learning Representations (ICLR), 2018
https://arxiv.org/abs/1802.01436
//// base (this is the basic generator transform)
Contains the base architecture from the paper
David Minnen, Johannes Ballé, George Toderici:
"Joint Autoregressive and Hierarchical Priors for Learned Image Compression"
https://arxiv.org/abs/1809.02736v1
//// variant2
same as base, but uses both mean and scale based hyperprior, but no autoregressive prior in hierarchy.
//// variant3
same as base, but uses both mean and scale based hyperprior, and uses a fast variant of pixelCNN++ autoregressive prior in hierarchy.
//// variant3_old
old version of variant3 using simple basic pixelCNN from OpenAI.
//// variant4
same as variant3, but transforms are modified to architecture similar to
XiangJi Wu1, Ziwen Zhang1, Jie Feng1, Lei Zhou1, Junmin Wu1
"End-to-end Optimized Video Compression with MV-Residual Prediction"
https://openaccess.thecvf.com/content_CVPRW_2020/papers/w7/Wu_End-to-End_Optimized_Video_Compression_With_MV-Residual_Prediction_CVPRW_2020_paper.pdf
with added Non-Local Block, Non-Local Attention Feature Extraction Module (NLAM), Mish & GDN combo activations, Subpixel upsampling (ICNR init)