-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbottchscore3.py
531 lines (482 loc) · 24.4 KB
/
bottchscore3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright: 2019, Stefano Forli (forli@scripps.edu)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Modified by: Adrian Krzyzanowski, March 2022, Waldmann Lab (adrian.krzyzanowski@mpi-dortmund.mpg.de)
# Added E/Z isomer detection and the s_i (chirality/stereoisomer) term modification for the E/Z isomers.
# Added option to change the maximum memory size for automorphic caulculations (for highly symmetrical molecules)
# Added function 'calculate_bottchscore_from_smiles' for easy score claculation from external scripts
import sys
import os
import argparse
from collections import OrderedDict
try:
from openbabel import openbabel as ob
from openbabel import pybel
except ModuleNotFoundError:
print("Error: OpenBabel >v.3 is required!")
sys.exit(1)
from math import log
# ref: https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.5b00723
# TODO
# - missing atropisomers (https://en.wikipedia.org/wiki/Atropisomer)
class BottchScore:
def __init__(self, verbose=False, debug=False, automorp_memory_maxsize=3000000):
"""
TERMS:
d_i : bonds with different chemical groups
e_i : unique list of non-H chemical elements involved in bonds
s_i : chirality bit
v_i : valence electrons (calculated as octet(8) - max number of bonds)
b_i : sum of all bond orders
"""
self.converter = ob.OBConversion()
self.converter.SetOutFormat('smi')
self.verbose = verbose
self.debug = debug
self.automorp_memory_maxsize = automorp_memory_maxsize
# SMARTS patterns used to assign mesomeric properties to groups
self._mesomery_patterns = {
# SMARTS_pattern : [equivalent atoms idx list, contribution ]
'[$([#8;X1])]=*-[$([#8;X1])]': [[[0, 2]], 1.5], # carboxylate, nitrate
'[$([#7;X2](=*))](=*)(-*=*)': [[[2, 1]], 1.5], # azete ring
# NOTE:
# tautomeric forms of histidine, guanidine, and others are not considered due
# to uncertainty in the implementation
# '[NHX3][CH0X3](=[NH2X3+,NHX2+0])[NH2X3]': [ [[0,2],[0,3],[2,3] ], 1.3 ], # guanidine/guanidinium
# '[NHX3][CH0X3](=[NH2X3+,NHX2+0])[NH2X3]': [ [[2,3] ], 1.5 ], # guanidine/guanidinium
# '[$([NHX3](C)(C))][CH0X3](=[NH2X3+,NHX2+0])[NH2X3]': [ [[0,2],[0,3],[2,3] ], 1.3 ], # guanidine/guanidinium
# '[CH2X4]' # histidine
# '[#6X3]1:' # imidazole
# '[$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),$([#7X3H])]:'
# '[#6X3H]:'
# '[$([#7X3H+,#7X2H0+0]:[#6X3H]:[#7X3H]),$([#7X3H])]:'
# '[#6X3H]1' : [[[1,3]], 2.5],
}
def score(self, mol, disable_mesomeric=False) -> float:
""" method to be called to calculate the score """
if self.debug and not self.verbose:
print("==========================================")
if mol.NumAtoms() < 2:
return 0
self._initialize_mol(mol, disable_mesomeric)
self._calculate_terms()
self._find_cistrans_bond_atoms()
self._calculate_score()
if self.verbose:
self.print_complexity_calculations()
self.print_table()
return self._intrinsic_complexity
def _initialize_mol(self, mol, disable_mesomeric):
""" perform initial operations on the molecule caching chemical
information for aromatic and some tautomeric perceptions"""
self.mol = mol
full = self.converter.WriteString(self.mol)
self._smiles = full.split()[0]
if self.debug: print("DEBUG> SMILES: %s" % self._smiles)
# create the storage for the non-hydrogen atoms
self._build_automorphism()
self._indices = OrderedDict()
self._mesomery_equivalence = {}
if not disable_mesomeric:
self._calc_mesomery()
def _calc_mesomery(self):
"""calculate atoms for which b_i value needs to be corrected"""
matcher = ob.OBSmartsPattern()
for patt, idx_info in self._mesomery_patterns.items():
# print("IDXINFO", idx_info)
idx_pairs, contribution = idx_info
matcher.Init(patt)
found = matcher.Match(self.mol)
if not found:
continue
found = [list(x) for x in matcher.GetUMapList()]
if self.debug:
print("DEBUG> Matched pattern |%s|" % patt)
print("DEBUG> ", found)
for f in found:
for pair in idx_pairs:
for idx in pair:
if self.debug: print("DEBUG> Assigning mesomery:", f, "->", f[idx])
self._mesomery_equivalence[f[idx]] = contribution
p0 = f[pair[0]]
p1 = f[pair[1]]
if self.debug: print("DEBUG> Updating automorphs:", p0, p1)
if not p0 in self.automorphs:
self.automorphs[p0] = set()
self.automorphs[p0].add(p1)
if not p1 in self.automorphs:
self.automorphs[p1] = set()
self.automorphs[p1].add(p0)
if self.debug:
print("DEBUG> MESO-EQUIV", self._mesomery_equivalence)
print("DEBUG> AUTO-EQUIV", self.automorphs)
def _calculate_terms(self):
""" calculate the different terms contribution"""
for idx in range(1, self.mol.NumAtoms() + 1):
# obabel numbering is 1-based
atom = self.mol.GetAtom(idx)
# hydrogen
if self._is_hydrogen(idx):
continue
self._indices[idx] = {}
self._calc_di(idx, atom)
self._calc_Vi(idx, atom)
self._calc_bi_ei_si(idx, atom)
def print_table(self):
""" print the explicit table of all the terms for used to calculate complexity"""
seq = ['di', 'ei', 'si', 'Vi', 'bi', 'complexity']
atom_list = [str(x) for x in list(self._equivalents.keys())]
atom_symbols = [self.mol.GetAtom(x).GetAtomicNum() for x in self._equivalents.keys()]
atom_symbols = [ob.GetSymbol(x) for x in atom_symbols]
atom_names = ["%s-%s" % (x[0], x[1]) for x in zip(atom_symbols, atom_list)]
print("\t", "\t".join(atom_names))
print("---------" * len(atom_symbols))
for prop in seq:
if prop == 'complexity':
string = 'cmplx'
else:
string = prop
print("%s\t" % string, end=' ')
for i in self._equivalents.keys():
if prop == 'complexity':
print("%2.2f\t" % self._indices[i][prop], end=' ')
else:
print("%1.1f\t" % self._indices[i][prop], end=' ')
print("")
print("---------" * len(atom_symbols))
print("SMILES : %s" % self._smiles)
print("Name : %s" % (self.mol.GetTitle()))
print("Intrinsic complexity : %2.2f" % self._intrinsic_complexity)
print("Complexity/atom : %2.2f" % (self._intrinsic_complexity / len(self._indices)))
print("=========" * len(atom_symbols))
def print_complexity_calculations(self):
""" prints out the explicit equations used for calculating the complexity score for the indexed atoms """
for idx in list(self._indices.keys()):
data = self._indices[idx]
print(("complexity [%3d]: %d * %d * %d log2( %d * %d) = %2.1f"
% (idx, data['di'], data['ei'], data['si'], data['Vi'], data['bi'], data['complexity'])))
print()
def _calculate_score(self):
""" calculate total complexity with a consideration for the double bond isomers
and adjust it to the symmetry factor
applying eq.3 of ref.1
"""
total_complexity = 0
# eq.3 of ref.1, left side
for idx in list(self._indices.keys()):
if not any(idx in double_bond for double_bond in self._cistrans_double_bond_atoms):
complexity = self._calculate_complexity(idx)
self._indices[idx]['complexity'] = complexity # complexity for a specific position
total_complexity += complexity
# accounting for the double bond isomers
for db_idx1, db_idx2 in self._cistrans_double_bond_atoms:
# calculating the initial complexity of the atoms in the double bond before adjusting for the increased s_i
complexity_db_idx1 = self._calculate_complexity(db_idx1)
complexity_db_idx2 = self._calculate_complexity(db_idx2)
# finding the position in the double bond with the lower complexity and doubling it
# (its s_i term increases from 1 to 2)
if complexity_db_idx1 <= complexity_db_idx2:
complexity_db_idx1 = 2 * complexity_db_idx1
self._indices[db_idx1]['si'] += 1
else:
complexity_db_idx2 = 2 * complexity_db_idx2
self._indices[db_idx2]['si'] += 1
self._indices[db_idx1]['complexity'] = complexity_db_idx1
self._indices[db_idx2]['complexity'] = complexity_db_idx2
total_complexity += complexity_db_idx1 + complexity_db_idx2
# eq.3 of ref.1, left side
for idx, eq_groups in list(self._equivalents.items()):
for e in eq_groups:
total_complexity -= 0.5 * self._indices[idx]['complexity'] / (len(eq_groups))
self._intrinsic_complexity = total_complexity
def _calculate_complexity(self, idx):
""" perform calculation of single complexity on a given index"""
data = self._indices[idx]
try:
complexity = data['di'] * data['ei'] * data['si'] * log(data['Vi'] * data['bi'], 2)
except:
print("[ *** Error calculating complexity: atom_idx[%d] *** ]" % idx)
return 0
return complexity
def _find_cistrans_bond_atoms(self):
""" finds indices of atoms that are inside double bonds allowing for E/Z isomers """
self._cistrans_double_bond_atoms = []
for bond in self._find_potential_cistrans_bonds():
db_atom_idx1 = bond.GetBeginAtom().GetIdx() # finds index of the first atom in the double bond
db_atom_idx2 = bond.GetEndAtom().GetIdx() # finds index of the second atom in the double bond
double_bond_atoms = (self.mol.GetAtom(db_atom_idx1), self.mol.GetAtom(db_atom_idx2))
register_cistrans = False
# analysing one side of the double bond at a time, checking if the groups are equivalent
for index, db_atom in enumerate(double_bond_atoms):
# initially the other atom in the double bond is added to the exclusion list
# for finding the atom neighbours
self.excluded_atoms = [double_bond_atoms[index - 1]]
# neighbours of one of the double bonds atoms are found (excluding the other atom in the double bond)
neigh_atoms_db = self._find_neighbours(db_atom)
neighbours_atom_numbers_db = self._find_neighbours(db_atom, return_atomic_nums=True)
# checking if the atoms directly attached to one side of the double bond are different
if len(set(neighbours_atom_numbers_db)) > 1 or len(neighbours_atom_numbers_db) == 1:
register_cistrans = True
# if the atoms directly attached to the double bond are the same, further analysis of the attached groups is made
else:
branch1_atoms = [neigh_atoms_db[0]] # currently analysed atoms in the first group attached to one side of the double bond
branch2_atoms = [neigh_atoms_db[1]] # currently analysed atoms in the second group attached to the same side of the double bond
branches_equal = True
while branches_equal:
# add already analysed branch atoms to the exclusion list, to travel only in one direction
# with the analysis; also prevents infinite loops with cyclic groups attached to the double bond
self.excluded_atoms += branch1_atoms + branch2_atoms
branches_equal = self._branch_levels_are_equal(branch1_atoms, branch2_atoms)
# find neighbours of the currently analysed atoms in the branch/group
branch1_atoms = [neigh for atom in branch1_atoms for neigh in self._find_neighbours(atom)]
branch2_atoms = [neigh for atom in branch2_atoms for neigh in self._find_neighbours(atom)]
if not branch1_atoms and not branch2_atoms:
break # finishing looping if there are no more atoms in the analysed branches/groups
if branches_equal:
# means that it cannot be E/Z isomer; further analysis of the double bond substitution is stopped
register_cistrans = False
break
else:
register_cistrans = True
if register_cistrans:
self._cistrans_double_bond_atoms.append((db_atom_idx1, db_atom_idx2)) # atom idxs are added as tuples
def _find_potential_cistrans_bonds(self):
""" finds atom indexes within double bonds that allow for potential cis-trans/E-Z isomers """
double_bonds = []
facade = ob.OBStereoFacade(self.mol)
for bond in ob.OBMolBondIter(self.mol):
mid = bond.GetId()
if facade.HasCisTransStereo(mid):
cistrans = facade.GetCisTransStereo(mid)
if cistrans.IsSpecified():
double_bonds.append(bond)
return double_bonds
def _branch_levels_are_equal(self, branch1_atoms, branch2_atoms):
""" checks if atoms in the analysed compound branch levels are equal/the same """
branch1_atomic_nums = sorted([atom_num for atom in branch1_atoms for atom_num in
self._find_neighbours(atom, return_atomic_nums=True)])
branch2_atomic_nums = sorted([atom_num for atom in branch2_atoms for atom_num in
self._find_neighbours(atom, return_atomic_nums=True)])
branch1_bond_orders = sorted([self._indices[atom.GetIdx()]['bi'] for atom in branch1_atoms])
branch2_bond_orders = sorted([self._indices[atom.GetIdx()]['bi'] for atom in branch2_atoms])
# checks if the atomic numbers and bond orders are the same in both currently analysed atom branches
if branch1_atomic_nums == branch2_atomic_nums and branch1_bond_orders == branch2_bond_orders:
return True # atoms/bonds orders in the branch level are equal
return False # atoms/bond orders in the branch level are different
def _find_neighbours(self, atom, return_atomic_nums=False):
"""
Finds atom objects or atomic numbers of direct atom neighbours.
Returns only neighbours that are not explicitly excluded.
"""
neigh_atoms = []
neigh_atomic_numbers = []
for neigh in ob.OBAtomAtomIter(atom):
if neigh in self.excluded_atoms: # only searches for neighbours that are not in the excluded list
continue
neigh_atoms.append(neigh)
neigh_atomic_numbers.append(self._get_atomic_num(neigh))
if return_atomic_nums:
return neigh_atomic_numbers # returns atomic numbers of the neighbours
return neigh_atoms # otherwise, returns the atomic numbers of the neighbours
def _calc_Vi(self, idx, atom):
""" calculate valence term of the atom"""
valence = atom.GetTotalValence()
charge = atom.GetFormalCharge()
if self.debug: print("DEBUG> Vi[%3d]: v = %d | charge = %d" % (idx, valence, charge))
vi = 8 - valence + charge
self._indices[idx]['Vi'] = vi
def _calc_bi_ei_si(self, idx, atom):
"""
Calculate atomic Bi (bond), Ei (equivalence/symmetry) and Si (chirality/asymmetry) terms
Does not account for geometric isomers
"""
bi = 0
ei = [self._get_atomic_num(atom)]
si = 1
if atom.IsChiral(): # does not take into consideration axial assymetry or cis-trans isomers <---
si += 1
for neigh in ob.OBAtomAtomIter(atom):
neigh_idx = neigh.GetIdx()
if self._is_hydrogen(neigh_idx):
continue
if idx in self._mesomery_equivalence:
# use mesomeric-corrected bond order
contribution = self._mesomery_equivalence[idx]
else:
# get bond order
bond = self.mol.GetBond(atom, neigh)
contribution = bond.GetBondOrder()
bi += contribution
# get neighbor element
ei.append(self._get_atomic_num(neigh))
self._indices[idx]['bi'] = bi
self._indices[idx]['ei'] = len(set(ei))
self._indices[idx]['si'] = si
@staticmethod
def _get_atomic_num(atom):
""" function to return the atomic number taking into account
isotope
"""
isotope = atom.GetIsotope()
if not isotope == 0:
return isotope
return atom.GetAtomicNum()
def _calc_di(self, idx, atom):
""" """
# keep track of equivalent groups, and mark the first one
# to be used as main
self._equivalents[idx] = []
if not idx in self._equivalents:
if idx in self.automorphs:
if len(set(self._equivalents.keys()) & self.automorphs[idx]) == 0:
self._equivalents[idx] = self.automorphs[idx]
else:
self._equivalents[idx] = set()
if idx in self.automorphs:
for u in self.automorphs[idx]:
self._equivalents[idx].append(u)
# count how many non-equivalent neighbors there are for atom
groups = []
for neigh in ob.OBAtomAtomIter(atom):
if self._is_hydrogen(neigh.GetIdx()):
continue
neigh_idx = neigh.GetIdx()
if (neigh_idx in self.automorphs):
if len(set(groups) & self.automorphs[neigh_idx]) > 0:
continue
groups.append(neigh_idx)
self._indices[idx]['di'] = len(groups)
def _build_automorphism(self):
""" automorphisms are 0-based
prune the automorphism map to remove
identities and compact multiple
mappings
"""
self._equivalents = {}
automorphs = ob.vvpairUIntUInt()
mol_copy = ob.OBMol(self.mol)
for i in ob.OBMolAtomIter(mol_copy):
isotope = i.GetIsotope()
if not isotope == 0:
n = i.GetAtomicNum()
i.SetAtomicNum(n + isotope)
bitvec = pybel.ob.OBBitVec()
ob.FindAutomorphisms(mol_copy, automorphs, bitvec, self.automorp_memory_maxsize)
self.automorphs = {}
for am in automorphs:
for i, j in am:
if i == j:
continue
k = i + 1
l = j + 1
if self._is_hydrogen(k):
continue
if self._is_hydrogen(l):
continue
if not k in self.automorphs:
self.automorphs[k] = []
self.automorphs[k].append(l)
for k, v in list(self.automorphs.items()):
self.automorphs[k] = set(v)
if self.debug:
from pprint import pprint
print("AUTOMORPHS", end='')
pprint(self.automorphs)
def _is_hydrogen(self, idx):
""" simple helper function to check if atom index is hydrogen """
return self.mol.GetAtom(idx).GetAtomicNum() == 1
def calculate_bottchscore_from_smiles(smiles: str, verbose_response=False, debug_arg=False, disable_mesomer=False,
automorp_memory_maxsize=3000000) -> float:
"""
Calculates a Bottcher score for a compound provided as a SMILES string.
:param smiles: SMILES for a compound for which Bottcher score will be calculated.
:param verbose_response: bool indicating if a verbose response should be printed.
:param debug_arg: bool indicating if debug info should be printed.
:param disable_mesomer: bool indicating if mesomerism should be disabled.
:param automorp_memory_maxsize: maximum allowed memory size for calculating automorphism in the compound,
compounds with considerable symmetry may require large memory size for completing the calculations.
:returns: Total Bottcher Score for a molecule
"""
mol_input = pybel.readstring("smi", smiles)
mol_ob = mol_input.OBMol
bottch_ob = BottchScore(verbose_response, debug_arg, automorp_memory_maxsize)
return bottch_ob.score(mol_ob, disable_mesomer)
if __name__ == "__main__":
debug = False
usage = "%s -i molfile.ext [-p] [-v] " % sys.argv[0]
epilog = ""
parser = argparse.ArgumentParser(description='Tool to calculate Böttcher score on small molecules.', usage=None,
epilog=epilog, formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('-i', action="store",
help='input structure; support all input formats supported by OB, including multi-structure formats',
metavar='filename.ext', required=True)
parser.add_argument('-m', action="store_true", help='disable mesomeric effect estimate', default=False)
parser.add_argument('-p', action="store_true", help='generate PNG image of the structure', default=False)
parser.add_argument('-c', action="store_true", help='add a progressive counter to the list of results shown',
default=False)
parser.add_argument('-v', action="store_true",
help='verbose mode; print the full table of the terms used to estimate the score, as described in the paper',
default=False)
parser.add_argument('-x', action="store",
help='specify the maximum memory that will be available for the automorphism/symmetry calculations; '
'the default value is set to 3000000', metavar='MaxMemory', default=3000000)
if len(sys.argv) < 2:
parser.print_help()
sys.exit(1)
if "-d" in sys.argv:
debug = True
sys.argv.remove('-d')
ARGS = parser.parse_args()
# input file
infile = ARGS.i
# check if verbose
verbose = ARGS.v
# save image
save_png = ARGS.p
# mesomeric effect
disable_mesomeric = ARGS.m
# maximum memory available for the automorphism calculations
max_mem = int(ARGS.x)
# show progressive molecule counter
show_counter = ARGS.c
counter = 1
# Parse format
name, ext = os.path.splitext(infile)
ext = ext[1:].lower()
# initialize mol parser
mol_parser = ob.OBConversion()
mol_parser.SetInAndOutFormats(ext, 'smi')
# initialize class
bottch = BottchScore(verbose, debug, max_mem)
# load the first molecule found in the file
mol = ob.OBMol()
more = mol_parser.ReadFile(mol, infile)
while more:
ob.PerceiveStereo(mol)
# score the molecule
score = bottch.score(mol, disable_mesomeric)
if not verbose:
if show_counter:
print("%d: %4.2f\t %s" % (counter, score, mol.GetTitle()))
else:
print("%4.2f\t %s" % (score, mol.GetTitle()))
if save_png:
name = mol.GetTitle()
if name.strip() == "":
name = "mol_%d" % counter
mol_parser.SetOutFormat('png')
mol_parser.WriteFile(mol, '%s_image.png' % name)
more = mol_parser.Read(mol)
counter += 1