-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathFAB_linf_pt.py
280 lines (222 loc) · 10.4 KB
/
FAB_linf_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
''' This is a preliminary implementation of FAB-attack in PyTorch.
It is only wrt Linf.
'''
import numpy as np
import time
import torch
import argparse
import sys
from torch.autograd import Variable
import torch.optim as optim
import torch.nn as nn
from torch.autograd.gradcheck import zero_gradients
torch.set_default_tensor_type('torch.cuda.FloatTensor')
def get_diff_logits_grads_batch(model, im3, la):
model.eval()
im = Variable(torch.from_numpy(im3).float().to(device), requires_grad=True)
with torch.enable_grad(): y = model(im)
g2 = compute_jacobian(im, y).cpu().numpy()
y2 = model(im.float()).cpu().detach().numpy()
la = np.squeeze(la)
df = y2 - np.expand_dims(y2[np.arange(im.shape[0]),la],1)
dg = g2 - np.expand_dims(g2[np.arange(im.shape[0]),la],1)
df[np.arange(im.shape[0]), la] = 1e10
return df, dg
def compute_jacobian(inputs, output):
assert inputs.requires_grad
num_classes = output.size()[1]
jacobian = torch.zeros(num_classes, *inputs.size())
grad_output = torch.zeros(*output.size())
if inputs.is_cuda:
grad_output = grad_output.cuda()
jacobian = jacobian.cuda()
for i in range(num_classes):
zero_gradients(inputs)
grad_output.zero_()
grad_output[:, i] = 1
output.backward(grad_output, retain_graph=True)
jacobian[i] = inputs.grad.data
return torch.transpose(jacobian, dim0=0, dim1=1)
def projection_linf(t2, w2, b2):
t = t2.clone().float()
w = w2.clone().float()
b = b2.clone().float()
d = torch.zeros(t.shape).float()
ind2 = ((w*t).sum(1) - b < 0).nonzero()
w[ind2] *= -1
b[ind2] *= -1
c5 = (w < 0).type(torch.cuda.FloatTensor)
a = torch.ones(t.shape).cuda()
d = (a*c5 - t)*(w != 0).type(torch.cuda.FloatTensor)
a -= a*(1 - c5)
p = torch.ones(t.shape)*c5 - t*(2*c5 - 1)
indp = torch.argsort(p, dim=1)
b = b - (w*t).sum(1)
b0 = (w*d).sum(1)
b1 = b0.clone()
counter = 0
indp2 = indp.unsqueeze(-1).flip(dims=(1,2)).squeeze()
u = torch.arange(0, w.shape[0])
ws = w[u.unsqueeze(1), indp2]
bs2 = - ws*d[u.unsqueeze(1), indp2]
s = torch.cumsum(ws.abs(), dim=1)
sb = torch.cumsum(bs2, dim=1) + b0.unsqueeze(1)
c = b - b1 > 0
b2 = sb[u, -1] - s[u, -1]*p[u, indp[u, 0]]
c_l = (b - b2 > 0).nonzero().squeeze()
c2 = ((b - b1 > 0) * (b - b2 <= 0)).nonzero().squeeze()
lb = torch.zeros(c2.shape[0])
ub = torch.ones(c2.shape[0])*(w.shape[1] - 1)
nitermax = torch.ceil(torch.log2(torch.tensor(w.shape[1]).float()))
counter2 = torch.zeros(lb.shape).type(torch.cuda.LongTensor)
while counter < nitermax:
counter4 = torch.floor((lb + ub)/2)
counter2 = counter4.type(torch.cuda.LongTensor)
indcurr = indp[c2, -counter2 - 1]
b2 = sb[c2, counter2] - s[c2, counter2]*p[c2, indcurr]
c = b[c2] - b2 > 0
ind3 = c.nonzero().squeeze()
ind32 = (~c).nonzero().squeeze()
lb[ind3] = counter4[ind3]
ub[ind32] = counter4[ind32]
counter += 1
lb = lb.cpu().numpy().astype(int)
counter2 = 0
if c_l.nelement != 0:
lmbd_opt = (torch.max((b[c_l] - sb[c_l, -1])/(-s[c_l, -1]), torch.zeros(sb[c_l, -1].shape))).unsqueeze(-1)
d[c_l] = (2*a[c_l] - 1)*lmbd_opt
lmbd_opt = (torch.max((b[c2] - sb[c2, lb])/(-s[c2, lb]), torch.zeros(sb[c2, lb].shape))).unsqueeze(-1)
d[c2] = torch.min(lmbd_opt, d[c2])*c5[c2] + torch.max(-lmbd_opt, d[c2])*(1-c5[c2])
return (d*(w != 0).type(torch.cuda.FloatTensor)).cpu()
def linear_approximation_search(model, clean_im, clean_im_l, adv, niter):
a1 = np.copy(clean_im)
a2 = np.copy(adv)
u = np.arange(clean_im.shape[0])
model.eval()
y1 = model(torch.from_numpy(a1).float().to(device)).cpu().detach().numpy()
y2 = model(torch.from_numpy(a2).float().to(device)).cpu().detach().numpy()
la2 = np.argmax(y2, 1)
for counter in range(niter):
t1 = (y1[u, clean_im_l] - y1[u, la2]).reshape([-1, 1, 1, 1])
t2 = (-(y2[u, clean_im_l] - y2[u, la2])).reshape([-1, 1, 1, 1])
t3 = t1/(t1 + t2 + 1e-10)
c3 = np.logical_and(0.0 <= t3, t3 <= 1.0)
t3[np.logical_not(c3)] = 1.0
a3 = a1*(1.0 - t3) + a2*t3
y3 = model(torch.from_numpy(a3).float().to(device)).cpu().detach().numpy()
la3 = np.argmax(y3, 1)
pred = la3 == clean_im_l
y1[pred] = y3[pred] + 0
a1[pred] = a3[pred] + 0
y2[np.logical_not(pred)] = y3[np.logical_not(pred)] + 0
la2[np.logical_not(pred)] = la3[np.logical_not(pred)] + 0
a2[np.logical_not(pred)] = a3[np.logical_not(pred)] + 0
res = np.amax(np.abs(a2 - clean_im), axis=(1,2,3))
return res, a2
def fab_pt(model, clean_im, clean_im_l):
model.eval()
y = torch.from_numpy(clean_im_l)
logits = model(torch.from_numpy(clean_im).float().to(device)).cpu().detach().numpy()
pred = np.argmax(logits, axis=1) == clean_im_l
pred1 = np.copy(pred)
im2 = clean_im[pred]
la2 = np.squeeze(clean_im_l[pred])
bs = np.sum(pred.astype(int))
u1 = np.arange(bs)
clean_im_2 = np.copy(clean_im)
adv = np.copy(im2)
adv_c = np.copy(clean_im)
res2 = 1e10*np.ones([bs])
res_c = np.zeros([clean_im.shape[0]])
x1 = np.copy(im2)
x0 = torch.from_numpy(np.reshape(np.copy(im2),[bs, -1])).cuda()
counter_restarts = 0
while counter_restarts < hps.n_restarts:
if counter_restarts > 0:
t = np.random.uniform(-1, 1, x1.shape)
x1 = im2 + np.minimum(res2, hps.eps).reshape([-1,1,1,1])*t/np.amax(np.abs(t), axis=(1,2,3), keepdims=True)*0.5
x1 = np.clip(x1, 0.0, 1.0)
counter_iter = 0
while counter_iter < hps.n_iter:
df, dg = get_diff_logits_grads_batch(model, x1, la2)
dist1 = np.abs(df)/(1e-8 + np.sum(np.abs(dg), axis=(2,3,4)))
ind = np.argmin(dist1, axis=1)
b = - df[u1, ind] + np.sum(np.reshape(dg[u1, ind]*x1, [bs, -1]), axis=1)
w = np.reshape(dg[u1, ind], [bs, -1])
x2 = torch.from_numpy(np.reshape(x1,[bs, -1])).float().cuda() if hps.dataset == 'ImageNet' else torch.from_numpy(np.reshape(x1,[bs, -1])).cuda()
w2, b2 = torch.from_numpy(w).cuda(), torch.from_numpy(b).cuda()
d3 = projection_linf(torch.cat((x2,x0),0), torch.cat((w2, w2), 0), torch.cat((b2, b2),0)).numpy()
d1 = np.reshape(d3[:bs], x1.shape)
d2 = np.reshape(d3[-bs:], x1.shape)
a1 = np.amax(np.abs(d1), axis=(1,2,3), keepdims=True)
a2 = np.amax(np.abs(d2), axis=(1,2,3), keepdims=True)
alpha = np.minimum(np.maximum(a1/np.maximum(a1 + a2, 1e-20), 0.0), hps.alpha_max)
x1 = np.clip((x1 + d1*hps.overshooting)*(1 - alpha) + (im2 + d2*hps.overshooting)*alpha, 0.0, 1.0)
logits = model(torch.from_numpy(x1).float().to(device)).cpu().detach().numpy()
pred = np.array(np.argmax(logits, axis=1) == la2)
ind2 = np.where(pred == False)
if np.sum(pred.astype(int)) < im2.shape[0]:
t = np.amax(np.abs(x1[ind2] - im2[ind2]), axis=(1,2,3))
adv[ind2] = x1[ind2] * (t < res2[ind2]).astype(int).reshape([-1,1,1,1]) + adv[ind2]*(t >= res2[ind2]).astype(int).reshape([-1,1,1,1])
res2[ind2] = t * (t < res2[ind2]).astype(int) + res2[ind2]*(t >= res2[ind2]).astype(int)
x1[ind2] = im2[ind2] + (x1[ind2] - im2[ind2])*hps.backward_beta
counter_iter += 1
counter_restarts += 1
ind3 = res2 < 1e10
print('success rate: {}/{} (on correctly classified points)'.format(np.sum(ind3), np.sum(pred1)))
if hps.las:
res2t, advt = linear_approximation_search(model, im2, la2, adv, 3)
res2 = np.copy(res2t)
adv = np.copy(advt)
ind3 = ind3.astype(float)
adv_c[pred1] = adv
res_c[pred1] = res2*ind3 + 1e10*(1 - ind3)
return res2, adv_c
if __name__ == '__main__':
''' This example assumes that models, checkpoints and datasets from https://github.com/yaodongyu/TRADES
have been dowanloaded.
'''
parser = argparse.ArgumentParser(description='Define hyperparameters.')
parser.add_argument('--bs', type=int, default=500)
parser.add_argument('--attack', type=str, default='fab')
parser.add_argument('--model', type=str, default='plain')
parser.add_argument('--dataset', type=str, default='cifar10')
parser.add_argument('--sp', type=int, default=0, help='index of the first image on which the attack is run')
parser.add_argument('--n_restarts', type=int, default=1)
parser.add_argument('--n_iter', type=int, default=100)
parser.add_argument('--eps', type=float, default=-1, help='epsilon for the random restarts')
parser.add_argument('--p', type=str, default='linf', help='Lp-norm of the attack')
parser.add_argument('--las', type=str, default='False', help='final search')
parser.add_argument('--alpha_max', type=float, default=0.1, help='param: alpha_max')
parser.add_argument('--overshooting', type=float, default=1.05, help='param: eta')
parser.add_argument('--backward_beta', type=float, default=0.9, help='param: beta')
parser.add_argument('--path_to_save', type=str, default='./results/', help='directory to save the results, must already exist')
hps = parser.parse_args()
hps.n_labels = 43 if hps.dataset == 'gts' else 10
hps.las = True if hps.las in ['True', 'true', '1'] else False
if hps.eps == -1: hps.eps = 0.3 if hps.dataset == 'mnist' else 0.0314
assert hps.p == 'linf', 'Lp-norm not supported'
### load models and datasets one can get at https://github.com/yaodongyu/TRADES
if hps.dataset == 'cifar10':
from models.wideresnet import WideResNet
device = torch.device("cuda")
model = WideResNet().to(device)
model.load_state_dict(torch.load('./checkpoints/model_cifar_wrn.pt'))
model.eval()
X_data = np.load('./data_attack/cifar10_X.npy')
Y_data = np.load('./data_attack/cifar10_Y.npy')
X_data = np.transpose(X_data, (0, 3, 1, 2))
elif hps.dataset == 'mnist':
from models.small_cnn import SmallCNN
device = torch.device("cuda")
model = SmallCNN().to(device)
model.load_state_dict(torch.load('./checkpoints/model_mnist_smallcnn.pt'))
model.eval()
X_data = np.load('./data_attack/mnist_X.npy')
Y_data = np.load('./data_attack/mnist_Y.npy')
X_data = np.transpose(np.expand_dims(X_data, axis=3), (0, 3, 1, 2))
### run the attack
res, adv = fab_pt(model, X_data[hps.sp:hps.sp + hps.bs], Y_data[hps.sp:hps.sp + hps.bs])
np.save(hps.path_to_save + hps.dataset+ '_' + hps.attack + '_' + str(hps.p) + '_niter_'\
+ str(hps.n_iter)+'_nrestarts_'+ str(hps.n_restarts)+ '_eps_'+str(hps.eps)+'_las_' +str(hps.las) + '_'+str(hps.sp)\
+ '_' + str(hps.sp + hps.bs), {'norms_adv': res, 'adv': adv})