-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrs_attacks.py
953 lines (823 loc) · 45 KB
/
rs_attacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
# Copyright (c) 2020-present
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import torch
import time
import math
import torch.nn.functional as F
import numpy as np
import copy
import sys
from utils import Logger
import os
class RSAttack():
"""
Sparse-RS attacks
:param predict: forward pass function
:param norm: type of the attack
:param n_restarts: number of random restarts
:param n_queries: max number of queries (each restart)
:param eps: bound on the sparsity of perturbations
:param seed: random seed for the starting point
:param alpha_init: parameter to control alphai
:param loss: loss function optimized ('margin', 'ce' supported)
:param resc_schedule adapt schedule of alphai to n_queries
:param device specify device to use
:param log_path path to save logfile.txt
:param constant_schedule use constant alphai
:param targeted perform targeted attacks
:param init_patches initialization for patches
:param resample_loc period in queries of resampling images and
locations for universal attacks
:param data_loader loader to get new images for resampling
:param update_loc_period period in queries of updates of the location
for image-specific patches
"""
def __init__(
self,
predict,
norm='L0',
n_queries=5000,
eps=None,
p_init=.8,
n_restarts=1,
seed=0,
verbose=True,
targeted=False,
loss='margin',
resc_schedule=True,
device=None,
log_path=None,
constant_schedule=False,
init_patches='random_squares',
resample_loc=None,
data_loader=None,
update_loc_period=None):
"""
Sparse-RS implementation in PyTorch
"""
self.predict = predict
self.norm = norm
self.n_queries = n_queries
self.eps = eps
self.p_init = p_init
self.n_restarts = n_restarts
self.seed = seed
self.verbose = verbose
self.targeted = targeted
self.loss = loss
self.rescale_schedule = resc_schedule
self.device = device
self.logger = Logger(log_path)
self.constant_schedule = constant_schedule
self.init_patches = init_patches
self.resample_loc = n_queries // 10 if resample_loc is None else resample_loc
self.data_loader = data_loader
self.update_loc_period = update_loc_period if not update_loc_period is None else 4 if not targeted else 10
def margin_and_loss(self, x, y):
"""
:param y: correct labels if untargeted else target labels
"""
logits = self.predict(x)
xent = F.cross_entropy(logits, y, reduction='none')
u = torch.arange(x.shape[0])
y_corr = logits[u, y].clone()
logits[u, y] = -float('inf')
y_others = logits.max(dim=-1)[0]
if not self.targeted:
if self.loss == 'ce':
return y_corr - y_others, -1. * xent
elif self.loss == 'margin':
return y_corr - y_others, y_corr - y_others
else:
return y_others - y_corr, xent
def init_hyperparam(self, x):
assert self.norm in ['L0', 'patches', 'frames',
'patches_universal', 'frames_universal']
assert not self.eps is None
assert self.loss in ['ce', 'margin']
if self.device is None:
self.device = x.device
self.orig_dim = list(x.shape[1:])
self.ndims = len(self.orig_dim)
if self.seed is None:
self.seed = time.time()
if self.targeted:
self.loss = 'ce'
def random_target_classes(self, y_pred, n_classes):
y = torch.zeros_like(y_pred)
for counter in range(y_pred.shape[0]):
l = list(range(n_classes))
l.remove(y_pred[counter])
t = self.random_int(0, len(l))
y[counter] = l[t]
return y.long().to(self.device)
def check_shape(self, x):
return x if len(x.shape) == (self.ndims + 1) else x.unsqueeze(0)
def random_choice(self, shape):
t = 2 * torch.rand(shape).to(self.device) - 1
return torch.sign(t)
def random_int(self, low=0, high=1, shape=[1]):
t = low + (high - low) * torch.rand(shape).to(self.device)
return t.long()
def normalize(self, x):
if self.norm == 'Linf':
t = x.abs().view(x.shape[0], -1).max(1)[0]
return x / (t.view(-1, *([1] * self.ndims)) + 1e-12)
elif self.norm == 'L2':
t = (x ** 2).view(x.shape[0], -1).sum(-1).sqrt()
return x / (t.view(-1, *([1] * self.ndims)) + 1e-12)
def lp_norm(self, x):
if self.norm == 'L2':
t = (x ** 2).view(x.shape[0], -1).sum(-1).sqrt()
return t.view(-1, *([1] * self.ndims))
def p_selection(self, it):
""" schedule to decrease the parameter p """
if self.rescale_schedule:
it = int(it / self.n_queries * 10000)
if 'patches' in self.norm:
if 10 < it <= 50:
p = self.p_init / 2
elif 50 < it <= 200:
p = self.p_init / 4
elif 200 < it <= 500:
p = self.p_init / 8
elif 500 < it <= 1000:
p = self.p_init / 16
elif 1000 < it <= 2000:
p = self.p_init / 32
elif 2000 < it <= 4000:
p = self.p_init / 64
elif 4000 < it <= 6000:
p = self.p_init / 128
elif 6000 < it <= 8000:
p = self.p_init / 256
elif 8000 < it:
p = self.p_init / 512
else:
p = self.p_init
elif 'frames' in self.norm:
if not 'universal' in self.norm :
tot_qr = 10000 if self.rescale_schedule else self.n_queries
p = max((float(tot_qr - it) / tot_qr - .5) * self.p_init * self.eps ** 2, 0.)
return 3. * math.ceil(p)
else:
assert self.rescale_schedule
its = [200, 600, 1200, 1800, 2500, 10000, 100000]
resc_factors = [1., .8, .6, .4, .2, .1, 0.]
c = 0
while it >= its[c]:
c += 1
return resc_factors[c] * self.p_init
elif 'L0' in self.norm:
if 0 < it <= 50:
p = self.p_init / 2
elif 50 < it <= 200:
p = self.p_init / 4
elif 200 < it <= 500:
p = self.p_init / 5
elif 500 < it <= 1000:
p = self.p_init / 6
elif 1000 < it <= 2000:
p = self.p_init / 8
elif 2000 < it <= 4000:
p = self.p_init / 10
elif 4000 < it <= 6000:
p = self.p_init / 12
elif 6000 < it <= 8000:
p = self.p_init / 15
elif 8000 < it:
p = self.p_init / 20
else:
p = self.p_init
if self.constant_schedule:
p = self.p_init / 2
return p
def sh_selection(self, it):
""" schedule to decrease the parameter p """
t = max((float(self.n_queries - it) / self.n_queries - .0) ** 1., 0) * .75
return t
def get_init_patch(self, c, s, n_iter=1000):
if self.init_patches == 'stripes':
patch_univ = torch.zeros([1, c, s, s]).to(self.device) + self.random_choice(
[1, c, 1, s]).clamp(0., 1.)
elif self.init_patches == 'uniform':
patch_univ = torch.zeros([1, c, s, s]).to(self.device) + self.random_choice(
[1, c, 1, 1]).clamp(0., 1.)
elif self.init_patches == 'random':
patch_univ = self.random_choice([1, c, s, s]).clamp(0., 1.)
elif self.init_patches == 'random_squares':
patch_univ = torch.zeros([1, c, s, s]).to(self.device)
for _ in range(n_iter):
size_init = torch.randint(low=1, high=math.ceil(s ** .5), size=[1]).item()
loc_init = torch.randint(s - size_init + 1, size=[2])
patch_univ[0, :, loc_init[0]:loc_init[0] + size_init, loc_init[1]:loc_init[1] + size_init] = 0.
patch_univ[0, :, loc_init[0]:loc_init[0] + size_init, loc_init[1]:loc_init[1] + size_init
] += self.random_choice([c, 1, 1]).clamp(0., 1.)
elif self.init_patches == 'sh':
patch_univ = torch.ones([1, c, s, s]).to(self.device)
return patch_univ.clamp(0., 1.)
def attack_single_run(self, x, y):
with torch.no_grad():
adv = x.clone()
c, h, w = x.shape[1:]
n_features = c * h * w
n_ex_total = x.shape[0]
if self.norm == 'L0':
eps = self.eps
x_best = x.clone()
n_pixels = h * w
b_all, be_all = torch.zeros([x.shape[0], eps]).long(), torch.zeros([x.shape[0], n_pixels - eps]).long()
for img in range(x.shape[0]):
ind_all = torch.randperm(n_pixels)
ind_p = ind_all[:eps]
ind_np = ind_all[eps:]
x_best[img, :, ind_p // w, ind_p % w] = self.random_choice([c, eps]).clamp(0., 1.)
b_all[img] = ind_p.clone()
be_all[img] = ind_np.clone()
margin_min, loss_min = self.margin_and_loss(x_best, y)
n_queries = torch.ones(x.shape[0]).to(self.device)
for it in range(1, self.n_queries):
# check points still to fool
idx_to_fool = (margin_min > 0.).nonzero().squeeze()
x_curr = self.check_shape(x[idx_to_fool])
x_best_curr = self.check_shape(x_best[idx_to_fool])
y_curr = y[idx_to_fool]
margin_min_curr = margin_min[idx_to_fool]
loss_min_curr = loss_min[idx_to_fool]
b_curr, be_curr = b_all[idx_to_fool], be_all[idx_to_fool]
if len(y_curr.shape) == 0:
y_curr.unsqueeze_(0)
margin_min_curr.unsqueeze_(0)
loss_min_curr.unsqueeze_(0)
b_curr.unsqueeze_(0)
be_curr.unsqueeze_(0)
idx_to_fool.unsqueeze_(0)
# build new candidate
x_new = x_best_curr.clone()
eps_it = max(int(self.p_selection(it) * eps), 1)
ind_p = torch.randperm(eps)[:eps_it]
ind_np = torch.randperm(n_pixels - eps)[:eps_it]
for img in range(x_new.shape[0]):
p_set = b_curr[img, ind_p]
np_set = be_curr[img, ind_np]
x_new[img, :, p_set // w, p_set % w] = x_curr[img, :, p_set // w, p_set % w].clone()
if eps_it > 1:
x_new[img, :, np_set // w, np_set % w] = self.random_choice([c, eps_it]).clamp(0., 1.)
else:
# if update is 1x1 make sure the sampled color is different from the current one
old_clr = x_new[img, :, np_set // w, np_set % w].clone()
assert old_clr.shape == (c, 1), print(old_clr)
new_clr = old_clr.clone()
while (new_clr == old_clr).all().item():
new_clr = self.random_choice([c, 1]).clone().clamp(0., 1.)
x_new[img, :, np_set // w, np_set % w] = new_clr.clone()
# compute loss of the new candidates
margin, loss = self.margin_and_loss(x_new, y_curr)
n_queries[idx_to_fool] += 1
# update best solution
idx_improved = (loss < loss_min_curr).float()
idx_to_update = (idx_improved > 0.).nonzero().squeeze()
loss_min[idx_to_fool[idx_to_update]] = loss[idx_to_update]
idx_miscl = (margin < -1e-6).float()
idx_improved = torch.max(idx_improved, idx_miscl)
nimpr = idx_improved.sum().item()
if nimpr > 0.:
idx_improved = (idx_improved.view(-1) > 0).nonzero().squeeze()
margin_min[idx_to_fool[idx_improved]] = margin[idx_improved].clone()
x_best[idx_to_fool[idx_improved]] = x_new[idx_improved].clone()
t = b_curr[idx_improved].clone()
te = be_curr[idx_improved].clone()
if nimpr > 1:
t[:, ind_p] = be_curr[idx_improved][:, ind_np] + 0
te[:, ind_np] = b_curr[idx_improved][:, ind_p] + 0
else:
t[ind_p] = be_curr[idx_improved][ind_np] + 0
te[ind_np] = b_curr[idx_improved][ind_p] + 0
b_all[idx_to_fool[idx_improved]] = t.clone()
be_all[idx_to_fool[idx_improved]] = te.clone()
# log results current iteration
ind_succ = (margin_min <= 0.).nonzero().squeeze()
if self.verbose and ind_succ.numel() != 0:
self.logger.log(' '.join(['{}'.format(it + 1),
'- success rate={}/{} ({:.2%})'.format(
ind_succ.numel(), n_ex_total,
float(ind_succ.numel()) / n_ex_total),
'- avg # queries={:.1f}'.format(
n_queries[ind_succ].mean().item()),
'- med # queries={:.1f}'.format(
n_queries[ind_succ].median().item()),
'- loss={:.3f}'.format(loss_min.mean()),
'- max pert={:.0f}'.format(((x_new - x_curr).abs() > 0
).max(1)[0].view(x_new.shape[0], -1).sum(-1).max()),
'- epsit={:.0f}'.format(eps_it),
]))
if ind_succ.numel() == n_ex_total:
break
elif self.norm == 'patches':
''' assumes square images and patches '''
s = int(math.ceil(self.eps ** .5))
x_best = x.clone()
x_new = x.clone()
loc = torch.randint(h - s, size=[x.shape[0], 2])
patches_coll = torch.zeros([x.shape[0], c, s, s]).to(self.device)
assert abs(self.update_loc_period) > 1
loc_t = abs(self.update_loc_period)
# set when to start single channel updates
it_start_cu = None
for it in range(0, self.n_queries):
s_it = int(max(self.p_selection(it) ** .5 * s, 1))
if s_it == 1:
break
it_start_cu = it + (self.n_queries - it) // 2
if self.verbose:
self.logger.log('starting single channel updates at query {}'.format(
it_start_cu))
# initialize patches
if self.verbose:
self.logger.log('using {} initialization'.format(self.init_patches))
for counter in range(x.shape[0]):
patches_coll[counter] += self.get_init_patch(c, s).squeeze().clamp(0., 1.)
x_new[counter, :, loc[counter, 0]:loc[counter, 0] + s,
loc[counter, 1]:loc[counter, 1] + s] = patches_coll[counter].clone()
margin_min, loss_min = self.margin_and_loss(x_new, y)
n_queries = torch.ones(x.shape[0]).to(self.device)
for it in range(1, self.n_queries):
# check points still to fool
idx_to_fool = (margin_min > -1e-6).nonzero().squeeze()
x_curr = self.check_shape(x[idx_to_fool])
patches_curr = self.check_shape(patches_coll[idx_to_fool])
y_curr = y[idx_to_fool]
margin_min_curr = margin_min[idx_to_fool]
loss_min_curr = loss_min[idx_to_fool]
loc_curr = loc[idx_to_fool]
if len(y_curr.shape) == 0:
y_curr.unsqueeze_(0)
margin_min_curr.unsqueeze_(0)
loss_min_curr.unsqueeze_(0)
loc_curr.unsqueeze_(0)
idx_to_fool.unsqueeze_(0)
# sample update
s_it = int(max(self.p_selection(it) ** .5 * s, 1))
p_it = torch.randint(s - s_it + 1, size=[2])
sh_it = int(max(self.sh_selection(it) * h, 0))
patches_new = patches_curr.clone()
x_new = x_curr.clone()
loc_new = loc_curr.clone()
update_loc = int((it % loc_t == 0) and (sh_it > 0))
update_patch = 1. - update_loc
if self.update_loc_period < 0 and sh_it > 0:
update_loc = 1. - update_loc
update_patch = 1. - update_patch
for counter in range(x_curr.shape[0]):
if update_patch == 1.:
# update patch
if it < it_start_cu:
if s_it > 1:
patches_new[counter, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it] += self.random_choice([c, 1, 1])
else:
# make sure to sample a different color
old_clr = patches_new[counter, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it].clone()
new_clr = old_clr.clone()
while (new_clr == old_clr).all().item():
new_clr = self.random_choice([c, 1, 1]).clone().clamp(0., 1.)
patches_new[counter, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it] = new_clr.clone()
else:
assert s_it == 1
assert it >= it_start_cu
# single channel updates
new_ch = self.random_int(low=0, high=3, shape=[1])
patches_new[counter, new_ch, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it] = 1. - patches_new[
counter, new_ch, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it]
patches_new[counter].clamp_(0., 1.)
if update_loc == 1:
# update location
loc_new[counter] += (torch.randint(low=-sh_it, high=sh_it + 1, size=[2]))
loc_new[counter].clamp_(0, h - s)
x_new[counter, :, loc_new[counter, 0]:loc_new[counter, 0] + s,
loc_new[counter, 1]:loc_new[counter, 1] + s] = patches_new[counter].clone()
# check loss of new candidate
margin, loss = self.margin_and_loss(x_new, y_curr)
n_queries[idx_to_fool]+= 1
# update best solution
idx_improved = (loss < loss_min_curr).float()
idx_to_update = (idx_improved > 0.).nonzero().squeeze()
loss_min[idx_to_fool[idx_to_update]] = loss[idx_to_update]
idx_miscl = (margin < -1e-6).float()
idx_improved = torch.max(idx_improved, idx_miscl)
nimpr = idx_improved.sum().item()
if nimpr > 0.:
idx_improved = (idx_improved.view(-1) > 0).nonzero().squeeze()
margin_min[idx_to_fool[idx_improved]] = margin[idx_improved].clone()
patches_coll[idx_to_fool[idx_improved]] = patches_new[idx_improved].clone()
loc[idx_to_fool[idx_improved]] = loc_new[idx_improved].clone()
# log results current iteration
ind_succ = (margin_min <= 0.).nonzero().squeeze()
if self.verbose and ind_succ.numel() != 0:
self.logger.log(' '.join(['{}'.format(it + 1),
'- success rate={}/{} ({:.2%})'.format(
ind_succ.numel(), n_ex_total,
float(ind_succ.numel()) / n_ex_total),
'- avg # queries={:.1f}'.format(
n_queries[ind_succ].mean().item()),
'- med # queries={:.1f}'.format(
n_queries[ind_succ].median().item()),
'- loss={:.3f}'.format(loss_min.mean()),
'- max pert={:.0f}'.format(((x_new - x_curr).abs() > 0
).max(1)[0].view(x_new.shape[0], -1).sum(-1).max()),
#'- sit={:.0f} - sh={:.0f}'.format(s_it, sh_it),
'{}'.format(' - loc' if update_loc == 1. else ''),
]))
if ind_succ.numel() == n_ex_total:
break
# apply patches
for counter in range(x.shape[0]):
x_best[counter, :, loc[counter, 0]:loc[counter, 0] + s,
loc[counter, 1]:loc[counter, 1] + s] = patches_coll[counter].clone()
elif self.norm == 'patches_universal':
''' assumes square images and patches '''
s = int(math.ceil(self.eps ** .5))
x_best = x.clone()
self.n_imgs = x.shape[0]
x_new = x.clone()
loc = torch.randint(h - s + 1, size=[x.shape[0], 2])
# set when to start single channel updates
it_start_cu = None
for it in range(0, self.n_queries):
s_it = int(max(self.p_selection(it) ** .5 * s, 1))
if s_it == 1:
break
it_start_cu = it + (self.n_queries - it) // 2
if self.verbose:
self.logger.log('starting single channel updates at query {}'.format(
it_start_cu))
# initialize patch
if self.verbose:
self.logger.log('using {} initialization'.format(self.init_patches))
patch_univ = self.get_init_patch(c, s)
it_init = 0
loss_batch = float(1e10)
n_succs = 0
n_iter = self.n_queries
# init update batch
assert not self.data_loader is None
assert not self.resample_loc is None
assert self.targeted
new_train_imgs = []
n_newimgs = self.n_imgs + 0
n_imgsneeded = math.ceil(self.n_queries / self.resample_loc) * n_newimgs
tot_imgs = 0
if self.verbose:
self.logger.log('imgs updated={}, imgs needed={}'.format(
n_newimgs, n_imgsneeded))
while tot_imgs < min(100000, n_imgsneeded):
x_toupdatetrain, _ = next(self.data_loader)
new_train_imgs.append(x_toupdatetrain)
tot_imgs += x_toupdatetrain.shape[0]
newimgstoadd = torch.cat(new_train_imgs, axis=0)
counter_resamplingimgs = 0
for it in range(it_init, n_iter):
# sample size and location of the update
s_it = int(max(self.p_selection(it) ** .5 * s, 1))
p_it = torch.randint(s - s_it + 1, size=[2])
patch_new = patch_univ.clone()
if s_it > 1:
patch_new[0, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it] += self.random_choice([c, 1, 1])
else:
old_clr = patch_new[0, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it].clone()
new_clr = old_clr.clone()
if it < it_start_cu:
while (new_clr == old_clr).all().item():
new_clr = self.random_choice(new_clr).clone().clamp(0., 1.)
else:
# single channel update
new_ch = self.random_int(low=0, high=3, shape=[1])
new_clr[new_ch] = 1. - new_clr[new_ch]
patch_new[0, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it] = new_clr.clone()
patch_new.clamp_(0., 1.)
# compute loss for new candidate
x_new = x.clone()
for counter in range(x.shape[0]):
loc_new = loc[counter]
x_new[counter, :, loc_new[0]:loc_new[0] + s, loc_new[1]:loc_new[1] + s] = 0.
x_new[counter, :, loc_new[0]:loc_new[0] + s, loc_new[1]:loc_new[1] + s] += patch_new[0]
margin_run, loss_run = self.margin_and_loss(x_new, y)
if self.loss == 'ce':
loss_run += x_new.shape[0]
loss_new = loss_run.sum()
n_succs_new = (margin_run < -1e-6).sum().item()
# accept candidate if loss improves
if loss_new < loss_batch:
is_accepted = True
loss_batch = loss_new + 0.
patch_univ = patch_new.clone()
n_succs = n_succs_new + 0
else:
is_accepted = False
# sample new locations and images
if (it + 1) % self.resample_loc == 0:
newimgstoadd_it = newimgstoadd[counter_resamplingimgs * n_newimgs:(
counter_resamplingimgs + 1) * n_newimgs].clone().cuda()
new_batch = [x[n_newimgs:].clone(), newimgstoadd_it.clone()]
x = torch.cat(new_batch, dim=0)
assert x.shape[0] == self.n_imgs
loc = torch.randint(h - s + 1, size=[self.n_imgs, 2])
assert loc.shape == (self.n_imgs, 2)
loss_batch = loss_batch * 0. + 1e6
counter_resamplingimgs += 1
# logging current iteration
if self.verbose:
self.logger.log(' '.join(['{}'.format(it + 1),
'- success rate={}/{} ({:.2%})'.format(
n_succs, n_ex_total,
float(n_succs) / n_ex_total),
'- loss={:.3f}'.format(loss_batch),
'- max pert={:.0f}'.format(((x_new - x).abs() > 0
).max(1)[0].view(x_new.shape[0], -1).sum(-1).max()),
]))
# apply patches on the initial images
for counter in range(x_best.shape[0]):
loc_new = loc[counter]
x_best[counter, :, loc_new[0]:loc_new[0] + s, loc_new[1]:loc_new[1] + s] = 0.
x_best[counter, :, loc_new[0]:loc_new[0] + s, loc_new[1]:loc_new[1] + s] += patch_univ[0]
elif self.norm == 'frames':
# set width and indices of frames
mask = torch.zeros(x.shape[-2:])
s = self.eps + 0
mask[:s] = 1.
mask[-s:] = 1.
mask[:, :s] = 1.
mask[:, -s:] = 1.
ind = (mask == 1.).nonzero().squeeze()
eps = ind.shape[0]
x_best = x.clone()
x_new = x.clone()
mask = mask.view(1, 1, h, w).to(self.device)
mask_frame = torch.ones([1, c, h, w], device=x.device) * mask
#
# set when starting single channel updates
it_start_cu = None
for it in range(0, self.n_queries):
s_it = int(max(self.p_selection(it), 1))
if s_it == 1:
break
it_start_cu = it + (self.n_queries - it) // 2
#it_start_cu = 10000
if self.verbose:
self.logger.log('starting single channel updates at query {}'.format(
it_start_cu))
# initialize frames
x_best[:, :, ind[:, 0], ind[:, 1]] = self.random_choice(
[x.shape[0], c, eps]).clamp(0., 1.)
margin_min, loss_min = self.margin_and_loss(x_best, y)
n_queries = torch.ones(x.shape[0]).to(self.device)
for it in range(1, self.n_queries):
# check points still to fool
idx_to_fool = (margin_min > -1e-6).nonzero().squeeze()
x_curr = self.check_shape(x[idx_to_fool])
x_best_curr = self.check_shape(x_best[idx_to_fool])
y_curr = y[idx_to_fool]
margin_min_curr = margin_min[idx_to_fool]
loss_min_curr = loss_min[idx_to_fool]
if len(y_curr.shape) == 0:
y_curr.unsqueeze_(0)
margin_min_curr.unsqueeze_(0)
loss_min_curr.unsqueeze_(0)
idx_to_fool.unsqueeze_(0)
# sample update
s_it = max(int(self.p_selection(it)), 1)
ind_it = torch.randperm(eps)[0]
x_new = x_best_curr.clone()
if s_it > 1:
dir_h = self.random_choice([1]).long().cpu()
dir_w = self.random_choice([1]).long().cpu()
new_clr = self.random_choice([c, 1]).clamp(0., 1.)
for counter in range(x_curr.shape[0]):
if s_it > 1:
for counter_h in range(s_it):
for counter_w in range(s_it):
x_new[counter, :, (ind[ind_it, 0] + dir_h * counter_h).clamp(0, h - 1),
(ind[ind_it, 1] + dir_w * counter_w).clamp(0, w - 1)] = new_clr.clone()
else:
p_it = ind[ind_it].clone()
old_clr = x_new[counter, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it].clone()
new_clr = old_clr.clone()
if it < it_start_cu:
while (new_clr == old_clr).all().item():
new_clr = self.random_choice([c, 1, 1]).clone().clamp(0., 1.)
else:
# single channel update
new_ch = self.random_int(low=0, high=3, shape=[1])
new_clr[new_ch] = 1. - new_clr[new_ch]
x_new[counter, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it] = new_clr.clone()
x_new.clamp_(0., 1.)
x_new = (x_new - x_curr) * mask_frame + x_curr
# check loss of new candidate
margin, loss = self.margin_and_loss(x_new, y_curr)
n_queries[idx_to_fool]+= 1
# update best solution
idx_improved = (loss < loss_min_curr).float()
idx_to_update = (idx_improved > 0.).nonzero().squeeze()
loss_min[idx_to_fool[idx_to_update]] = loss[idx_to_update]
idx_miscl = (margin < -1e-6).float()
idx_improved = torch.max(idx_improved, idx_miscl)
nimpr = idx_improved.sum().item()
if nimpr > 0.:
idx_improved = (idx_improved.view(-1) > 0).nonzero().squeeze()
margin_min[idx_to_fool[idx_improved]] = margin[idx_improved].clone()
x_best[idx_to_fool[idx_improved]] = x_new[idx_improved].clone()
# log results current iteration
ind_succ = (margin_min <= 0.).nonzero().squeeze()
if self.verbose and ind_succ.numel() != 0:
self.logger.log(' '.join(['{}'.format(it + 1),
'- success rate={}/{} ({:.2%})'.format(
ind_succ.numel(), n_ex_total,
float(ind_succ.numel()) / n_ex_total),
'- avg # queries={:.1f}'.format(
n_queries[ind_succ].mean().item()),
'- med # queries={:.1f}'.format(
n_queries[ind_succ].median().item()),
'- loss={:.3f}'.format(loss_min.mean()),
'- max pert={:.0f}'.format(((x_new - x_curr).abs() > 0
).max(1)[0].view(x_new.shape[0], -1).sum(-1).max()),
#'- min pert={:.0f}'.format(((x_new - x_curr).abs() > 0
#).max(1)[0].view(x_new.shape[0], -1).sum(-1).min()),
#'- sit={:.0f} - indit={}'.format(s_it, ind_it.item()),
]))
if ind_succ.numel() == n_ex_total:
break
elif self.norm == 'frames_universal':
# set width and indices of frames
mask = torch.zeros(x.shape[-2:])
s = self.eps + 0
mask[:s] = 1.
mask[-s:] = 1.
mask[:, :s] = 1.
mask[:, -s:] = 1.
ind = (mask == 1.).nonzero().squeeze()
eps = ind.shape[0]
x_best = x.clone()
x_new = x.clone()
mask = mask.view(1, 1, h, w).to(self.device)
mask_frame = torch.ones([1, c, h, w], device=x.device) * mask
frame_univ = self.random_choice([1, c, eps]).clamp(0., 1.)
# set when to start single channel updates
it_start_cu = None
for it in range(0, self.n_queries):
s_it = int(max(self.p_selection(it) * s, 1))
if s_it == 1:
break
it_start_cu = it + (self.n_queries - it) // 2
if self.verbose:
self.logger.log('starting single channel updates at query {}'.format(
it_start_cu))
self.n_imgs = x.shape[0]
loss_batch = float(1e10)
n_queries = torch.ones_like(y).float()
# init update batch
assert not self.data_loader is None
assert not self.resample_loc is None
assert self.targeted
new_train_imgs = []
n_newimgs = self.n_imgs + 0
n_imgsneeded = math.ceil(self.n_queries / self.resample_loc) * n_newimgs
tot_imgs = 0
if self.verbose:
self.logger.log('imgs updated={}, imgs needed={}'.format(
n_newimgs, n_imgsneeded))
while tot_imgs < min(100000, n_imgsneeded):
x_toupdatetrain, _ = next(self.data_loader)
new_train_imgs.append(x_toupdatetrain)
tot_imgs += x_toupdatetrain.shape[0]
newimgstoadd = torch.cat(new_train_imgs, axis=0)
counter_resamplingimgs = 0
for it in range(self.n_queries):
# sample update
s_it = max(int(self.p_selection(it) * self.eps), 1)
ind_it = torch.randperm(eps)[0]
mask_frame[:, :, ind[:, 0], ind[:, 1]] = 0
mask_frame[:, :, ind[:, 0], ind[:, 1]] += frame_univ
if s_it > 1:
dir_h = self.random_choice([1]).long().cpu()
dir_w = self.random_choice([1]).long().cpu()
new_clr = self.random_choice([c, 1]).clamp(0., 1.)
for counter_h in range(s_it):
for counter_w in range(s_it):
mask_frame[0, :, (ind[ind_it, 0] + dir_h * counter_h).clamp(0, h - 1),
(ind[ind_it, 1] + dir_w * counter_w).clamp(0, w - 1)] = new_clr.clone()
else:
p_it = ind[ind_it]
old_clr = mask_frame[0, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it].clone()
new_clr = old_clr.clone()
if it < it_start_cu:
while (new_clr == old_clr).all().item():
new_clr = self.random_choice([c, 1, 1]).clone().clamp(0., 1.)
else:
# single channel update
new_ch = self.random_int(low=0, high=3, shape=[1])
new_clr[new_ch] = 1. - new_clr[new_ch]
mask_frame[0, :, p_it[0]:p_it[0] + s_it, p_it[1]:p_it[1] + s_it] = new_clr.clone()
frame_new = mask_frame[:, :, ind[:, 0], ind[:, 1]].clone()
frame_new.clamp_(0., 1.)
if len(frame_new.shape) == 2:
frame_new.unsqueeze_(0)
x_new[:, :, ind[:, 0], ind[:, 1]] = 0.
x_new[:, :, ind[:, 0], ind[:, 1]] += frame_new
margin_run, loss_run = self.margin_and_loss(x_new, y)
if self.loss == 'ce':
loss_run += x_new.shape[0]
loss_new = loss_run.sum()
n_succs_new = (margin_run < -1e-6).sum().item()
# accept candidate if loss improves
if loss_new < loss_batch:
#is_accepted = True
loss_batch = loss_new + 0.
frame_univ = frame_new.clone()
n_succs = n_succs_new + 0
# sample new images
if (it + 1) % self.resample_loc == 0:
newimgstoadd_it = newimgstoadd[counter_resamplingimgs * n_newimgs:(
counter_resamplingimgs + 1) * n_newimgs].clone().cuda()
new_batch = [x[n_newimgs:].clone(), newimgstoadd_it.clone()]
x = torch.cat(new_batch, dim=0)
assert x.shape[0] == self.n_imgs
loss_batch = loss_batch * 0. + 1e6
x_new = x.clone()
counter_resamplingimgs += 1
# loggin current iteration
if self.verbose:
self.logger.log(' '.join(['{}'.format(it + 1),
'- success rate={}/{} ({:.2%})'.format(
n_succs, n_ex_total,
float(n_succs) / n_ex_total),
'- loss={:.3f}'.format(loss_batch),
'- max pert={:.0f}'.format(((x_new - x).abs() > 0
).max(1)[0].view(x_new.shape[0], -1).sum(-1).max()),
]))
# apply frame on initial images
x_best[:, :, ind[:, 0], ind[:, 1]] = 0.
x_best[:, :, ind[:, 0], ind[:, 1]] += frame_univ
return n_queries, x_best
def perturb(self, x, y=None):
"""
:param x: clean images
:param y: untargeted attack -> clean labels,
if None we use the predicted labels
targeted attack -> target labels, if None random classes,
different from the predicted ones, are sampled
"""
self.init_hyperparam(x)
adv = x.clone()
qr = torch.zeros([x.shape[0]]).to(self.device)
if y is None:
if not self.targeted:
with torch.no_grad():
output = self.predict(x)
y_pred = output.max(1)[1]
y = y_pred.detach().clone().long().to(self.device)
else:
with torch.no_grad():
output = self.predict(x)
n_classes = output.shape[-1]
y_pred = output.max(1)[1]
y = self.random_target_classes(y_pred, n_classes)
else:
y = y.detach().clone().long().to(self.device)
if not self.targeted:
acc = self.predict(x).max(1)[1] == y
else:
acc = self.predict(x).max(1)[1] != y
startt = time.time()
torch.random.manual_seed(self.seed)
torch.cuda.random.manual_seed(self.seed)
np.random.seed(self.seed)
for counter in range(self.n_restarts):
ind_to_fool = acc.nonzero().squeeze()
if len(ind_to_fool.shape) == 0:
ind_to_fool = ind_to_fool.unsqueeze(0)
if ind_to_fool.numel() != 0:
x_to_fool = x[ind_to_fool].clone()
y_to_fool = y[ind_to_fool].clone()
qr_curr, adv_curr = self.attack_single_run(x_to_fool, y_to_fool)
output_curr = self.predict(adv_curr)
if not self.targeted:
acc_curr = output_curr.max(1)[1] == y_to_fool
else:
acc_curr = output_curr.max(1)[1] != y_to_fool
ind_curr = (acc_curr == 0).nonzero().squeeze()
acc[ind_to_fool[ind_curr]] = 0
adv[ind_to_fool[ind_curr]] = adv_curr[ind_curr].clone()
qr[ind_to_fool[ind_curr]] = qr_curr[ind_curr].clone()
if self.verbose:
print('restart {} - robust accuracy: {:.2%}'.format(
counter, acc.float().mean()),
'- cum. time: {:.1f} s'.format(
time.time() - startt))
return qr, adv