-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathk_means.py
137 lines (120 loc) · 5.44 KB
/
k_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import random
from word_indexing import word_indexer
import operator
from math import pow
###Thangs to do:
#1. k-means: cluster assignment step, move centroid step
#2. cost function
#3. random initialization
#4. outer for loop
class k_means(object):
'''K-means clustering algorithm, unsupervised learning. Most of code assumes only one feature.'''
def __init__(self, m, data):
'''Constructor.
:param m: Number of training examples.
:param data: A numpy array of feature values.
'''
self.m = m
self.data = data
def cluster_centroid_initialization(self, K):
#Initialize K cluster_centroids by picking K points from dataset
cluster_centroids = random.sample(self.data, K)
return cluster_centroids
def clustering(self, K, cluster_centroids):
'''Cluster assignment and move centroid step. Looks for K clusters in data.
:param K: Number of clusters algorithm looks for.
:return cluster_centroid_output: K-dimensional array with centroid positions.'''
#Build dictionary: key = number of centroid, value = position of centroid
clusters_dictionary = {k+1 : cluster_centroids[k] for k in range(0,K)} #Contains cluster-position value pairs
#Initializing indexation dictionary
assignment_dictionary = {} #Will contain datapoint-assignment value pairs
for x in range(0, self.m):
temp_0 = 1000000 # Initialize minimal distance
for k in range(1, K+1):
distance = np.linalg.norm((self.data[x] - clusters_dictionary[k]), ord=2)
if distance <= temp_0:
assignment_dictionary.update({x : k})
temp_0 = distance
else:
pass
#Move centroid step
for k in range(1, K+1):
list_of_points = []
for x, cluster in assignment_dictionary.iteritems():
if cluster == k:
list_of_points.append(self.data[x])
average_point = sum(list_of_points)/len(list_of_points)
clusters_dictionary[k] = average_point
cluster_centroid_output = np.arange(K)
for k in range(0,K):
cluster_centroid_output[k] = clusters_dictionary[k+1]
return cluster_centroid_output
def find_clusters(self, K):
'''Finds locally optimal clusters.
:param K: Number of clusters.
:return final_cluster_centroids: K dimensional array with final centroid positions.'''
init = self.cluster_centroid_initialization(K)
iterations = 100
for i in range(0,iterations):
temp0 = self.clustering(K, init)
init = temp0
return temp0
def distorsion_function(self, K, cluster_centroids):
'''Compute cost given data and K cluster centroids with their associated datapoints.
First, compute dictionaries again; second, compute cost.
:param cluster_centroids: K cluster centroids.
:param K: Number of cluster centroids.
:return total_distorsion: Mean squared distance from assigned cluster centroids.'''
clusters_dictionary = {k+1 : cluster_centroids[k] for k in range(0,K)} #Contains cluster-position value pairs
assignment_dictionary = {} #Will contain datapoint-assignment value pairs
for x in range(0, self.m):
temp_0 = 1000000 # Initialize minimal distance
for k in range(1,K+1):
distance = np.linalg.norm((self.data[x] - clusters_dictionary[k]), ord=2)
if distance <= temp_0:
assignment_dictionary.update({x : k})
temp_0 = distance
total_distorsion = 0.0 #Initialize total cost
for x in range(0, self.m):
associated_cluster = assignment_dictionary[x]
distance2 = self.data[x] - clusters_dictionary[associated_cluster]
total_distorsion += np.linalg.norm(distance2, ord=2)
total_distorsion = total_distorsion / self.m
return total_distorsion
def robust_centroids(self, K):
'''Finds K centroids for 100 different initalizations. Picks that set of centroids with minimal distorsion.
:param K: Number of centroids.
:return optimal_centroids: Array of optimal centroids.
:return optimal_cost: Distorsion optimal centroids incur.'''
init_cost = pow(10,100)
for i in range(0,100):
temp_clusters = self.find_clusters(K)
temp_cost = self.distorsion_function(K, temp_clusters)
if temp_cost < init_cost:
optimal_centroids = temp_clusters
init_cost = temp_cost
else:
pass
return init_cost#, optimal_centroids Now just outputs cost, could also output actual position of centroids!
test_data = np.array([[-1.1],[-2],[-3],[14],[15],[16]])
test = k_means(6, test_data)
#
# init = test.cluster_centroid_initialization(2)
# print(test.clustering(2, init))
#
# test_data_2 = word_indexer("//home//sh//Desktop//june_project//data_quine//all_texts//1953e_On Mental Entities_Quine (1).txt")
#
# test2 = k_means(3, test_data_2)
# initialize = test2.cluster_centroid_initialization(2)
# print(initialize)
#
# clustering_step = test2.clustering(2, initialize)
# print(clustering_step)
# runit = test2.find_clusters(2)
# print(runit)
# cost = test2.distorsion_function(2, runit)
# print(cost)
#
# a = test.robust_centroids(2)
# print(a)