-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmultivariate_anomaly.py
44 lines (34 loc) · 1.4 KB
/
multivariate_anomaly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import matplotlib.pyplot as plt
mean1 = [100,50]
covariance1 = [[10,1],[3,35]]
x = np.random.multivariate_normal(mean1, covariance1)
x, y = np.random.multivariate_normal(mean1, covariance1, 5000).T #x, y are 5000 dimensional row vector arrays
plt.plot(x, y, 'x')
plt.axis('equal')
data = np.array([x,y])
data_test = np.array([[1,2,3],[100,101,102]])
#plt.show()
class multivariate_model(object):
def __init__(self, data):
self.observation_number = len(data[0])
self.feature_number = len(data)
self.data = data
def mean_estimator(self):
mean_vector = np.zeros(shape=(self.feature_number,1))
for feature in range(0, self.feature_number):
init_mean = 0.0
for observation in range(0, self.observation_number):
init_mean += self.data[feature, observation]/float(self.observation_number)
mean_vector[feature] = init_mean
return mean_vector
def covariance_matrix(self, mean_vector):
covariance_matrix = np.zeros(shape=(self.feature_number,self.feature_number))
for observation in range(0, self.observation_number):
temp0 = self.data[:,observation] - mean_vector
temp1 = temp0 * temp0[np.newaxis].T
covariance_matrix += temp1
return covariance_matrix
test = multivariate_model(data)
me = test.mean_estimator()
print(test.covariance_matrix(me))