forked from st-ts/bci_up
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline_eeglab.m
41 lines (34 loc) · 1.57 KB
/
pipeline_eeglab.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
% Pipeline for the data pre-processing
% Including:
% 1. Loading
% 2. Bandpass filter
% 3. Re-reference to the ref channel X3
% 3. Artifact correction / rejection
% ---- need to decide btw correction and rejection
% 3.1. Eye blinks
% 3.2. Movements
% 4. Convert to cvs or json for further analysis in Python
% Load eeglab set from the one created earlier
eeglab;
data_folder = 'D:\BCI\large_eeg_19ch_13subj';
set_name = 'SubjectJ_LRHand.set'; % need to make universal later
EEG = pop_loadset('filename', set_name, 'filepath', data_folder);
% Bandpass & notch filtering
low_cutoff = 0.5; high_cutoff = 70;
EEG = pop_eegfiltnew(EEG, 'locutoff', low_cutoff, 'hicutoff', high_cutoff);
EEG = pop_eegfiltnew(EEG, 'locutoff', 49, 'hicutoff', 51, 'revfilt', 1); % Notch
% Re-reference the data to the channel X3
EEG = pop_reref(EEG, find(strcmp({EEG.chanlocs.labels}, 'X3')));
% clean data using the clean_rawdata plugin
EEG = pop_clean_rawdata( EEG,'FlatlineCriterion',5,'ChannelCriterion',0.87, ...
'LineNoiseCriterion',4,'Highpass',[0.25 0.75] ,'BurstCriterion',20, ...
'WindowCriterion',0.25,'BurstRejection','on','Distance','Euclidian', ...
'WindowCriterionTolerances',[-Inf 7] ,'fusechanrej',1);
% Run Independent Component Analysis (ICA) to correct for artifacts
EEG = pop_runica(EEG, 'extended', 1);
% run ICLabel and flag artifactual components
EEG = pop_iclabel(EEG, 'default');
EEG = pop_icflag( EEG,[NaN NaN;0.9 1;0.9 1;NaN NaN;NaN NaN;NaN NaN;NaN NaN]);
% Save for export in csv
csv_filename = [set_name '_reg_proc.csv'];
writematrix( EEG.data', [data_folder csv_filename]);