There is an integer array nums
sorted in non-decreasing order (not necessarily with distinct values).
Before being passed to your function, nums
is rotated at an unknown pivot index k
(0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,4,4,5,6,6,7]
might be rotated at pivot index 5
and become [4,5,6,6,7,0,1,2,4,4]
.
Given the array nums
after the rotation and an integer target
, return true
if target
is in nums
, or false
if it is not in nums
.
Input: nums = [2,5,6,0,0,1,2], target = 0 Output: true
Input: nums = [2,5,6,0,0,1,2], target = 3 Output: false
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
is guaranteed to be rotated at some pivot.-104 <= target <= 104
Follow up: This problem is the same as Search in Rotated Sorted Array, where nums
may contain duplicates. Would this affect the runtime complexity? How and why?
impl Solution {
pub fn search(nums: Vec<i32>, target: i32) -> bool {
let mut l = 0;
let mut r = nums.len();
while l < r {
let m = (l + r) / 2;
if target == nums[m] {
return true;
}
if nums[l] == nums[m] && nums[m] == nums[r - 1] {
l += 1;
r -= 1;
} else if nums[l] <= nums[m] {
if target < nums[m] && target >= nums[l] {
r = m;
} else {
l = m + 1;
}
} else {
if target < nums[m] || target > *nums.last().unwrap() {
r = m;
} else {
l = m + 1;
}
}
}
false
}
}