We define a harmounious array as an array where the difference between its maximum value and its minimum value is exactly 1.
Now, given an integer array, you need to find the length of its longest harmonious subsequence among all its possible subsequences.
Input: [1,3,2,2,5,2,3,7] Output: 5 Explanation: The longest harmonious subsequence is [3,2,2,2,3].
Note: The length of the input array will not exceed 20,000.
impl Solution {
pub fn find_lhs(nums: Vec<i32>) -> i32 {
let mut max_len = 0;
for i in 0..nums.len() {
if nums.contains(&(nums[i] + 1)) {
let mut len = 0;
for j in 0..nums.len() {
if nums[j] == nums[i] || nums[j] == nums[i] + 1 {
len += 1;
}
}
max_len = max_len.max(len);
}
}
max_len as i32
}
}
use std::collections::HashMap;
impl Solution {
pub fn find_lhs(nums: Vec<i32>) -> i32 {
let mut counter = HashMap::new();
let mut max_len = 0;
for num in nums {
*counter.entry(num).or_insert(0) += 1;
}
for (num, cnt1) in counter.iter() {
if let Some(&cnt2) = counter.get(&(num + 1)) {
max_len = max_len.max(cnt1 + cnt2);
}
}
max_len
}
}
impl Solution {
pub fn find_lhs(nums: Vec<i32>) -> i32 {
let mut nums = nums;
nums.sort_unstable();
let mut max_len = 0;
let mut i = 0;
let mut j = 1;
while i < nums.len() {
while j < nums.len() && nums[j] == nums[i] {
j += 1;
}
let k = j;
if j < nums.len() && nums[j] == nums[i] + 1 {
while j < nums.len() && nums[j] == nums[i] + 1 {
j += 1;
}
max_len = max_len.max(j - i);
}
i = k;
}
max_len as i32
}
}