You are given an array of integers nums
and an integer target
.
Return the number of non-empty subsequences of nums
such that the sum of the minimum and maximum element on it is less or equal to target
. Since the answer may be too large, return it modulo 109 + 7
.
Input: nums = [3,5,6,7], target = 9 Output: 4 Explanation: There are 4 subsequences that satisfy the condition. [3] -> Min value + max value <= target (3 + 3 <= 9) [3,5] -> (3 + 5 <= 9) [3,5,6] -> (3 + 6 <= 9) [3,6] -> (3 + 6 <= 9)
Input: nums = [3,3,6,8], target = 10 Output: 6 Explanation: There are 6 subsequences that satisfy the condition. (nums can have repeated numbers). [3] , [3] , [3,3], [3,6] , [3,6] , [3,3,6]
Input: nums = [2,3,3,4,6,7], target = 12 Output: 61 Explanation: There are 63 non-empty subsequences, two of them do not satisfy the condition ([6,7], [7]). Number of valid subsequences (63 - 2 = 61).
1 <= nums.length <= 105
1 <= nums[i] <= 106
1 <= target <= 106
impl Solution {
pub fn num_subseq(nums: Vec<i32>, target: i32) -> i32 {
let mut nums = nums;
let mut i = nums.len() - 1;
let mut pow2 = vec![1];
let mut ret = 0;
nums.sort_unstable();
for j in 0..nums.len() {
if j > i || nums[j] * 2 > target {
break;
}
while nums[i] + nums[j] > target {
i -= 1;
}
while i - j >= pow2.len() {
pow2.push(pow2.last().unwrap() * 2 % 1_000_000_007);
}
ret = (ret + pow2[i - j]) % 1_000_000_007;
}
ret
}
}