You are given two integer arrays nums1
and nums2
of equal length n
and an integer k
. You can perform the following operation on nums1
:
- Choose two indexes
i
andj
and incrementnums1[i]
byk
and decrementnums1[j]
byk
. In other words,nums1[i] = nums1[i] + k
andnums1[j] = nums1[j] - k
.
nums1
is said to be equal to nums2
if for all indices i
such that 0 <= i < n
, nums1[i] == nums2[i]
.
Return the minimum number of operations required to make nums1
equal to nums2
. If it is impossible to make them equal, return -1
.
Input: nums1 = [4,3,1,4], nums2 = [1,3,7,1], k = 3 Output: 2 Explanation: In 2 operations, we can transform nums1 to nums2. 1st operation: i = 2, j = 0. After applying the operation, nums1 = [1,3,4,4]. 2nd operation: i = 2, j = 3. After applying the operation, nums1 = [1,3,7,1]. One can prove that it is impossible to make arrays equal in fewer operations.
Input: nums1 = [3,8,5,2], nums2 = [2,4,1,6], k = 1 Output: -1 Explanation: It can be proved that it is impossible to make the two arrays equal.
n == nums1.length == nums2.length
2 <= n <= 105
0 <= nums1[i], nums2[j] <= 109
0 <= k <= 105
impl Solution {
pub fn min_operations(nums1: Vec<i32>, nums2: Vec<i32>, k: i32) -> i64 {
if k == 0 {
if (0..nums1.len()).all(|i| nums1[i] == nums2[i]) {
return 0;
} else {
return -1;
}
}
let mut inc = 0;
let mut dec = 0;
for i in 0..nums1.len() {
if nums1[i] < nums2[i] && (nums2[i] - nums1[i]) % k == 0 {
inc += ((nums2[i] - nums1[i]) / k) as i64;
} else if nums1[i] > nums2[i] && (nums1[i] - nums2[i]) % k == 0 {
dec += ((nums1[i] - nums2[i]) / k) as i64;
} else if nums1[i] != nums2[i] {
return -1;
}
}
if inc == dec {
inc
} else {
-1
}
}
}