-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathextractPoint.py
318 lines (267 loc) · 10.2 KB
/
extractPoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# %% [markdown]
# This script will extract the time series of albedo at the site of AWSs.
# shunan.feng@envs.au.dk (https://www.glacier-hub.com/)
# %%
import geemap
import ee
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import plotly.express as px
import seaborn as sns
#%% map of aws sites
df = pd.read_excel("insitu_list.xlsx", sheet_name="awsList")
fig = plt.figure(figsize=(12, 8), edgecolor='w')
m = Basemap(projection='mill', resolution=None,
llcrnrlat=-85, urcrnrlat=85,
llcrnrlon=-180, urcrnrlon=180)
m.bluemarble(scale=0.5);
m.scatter(df.Lon, df.Lat, latlon=True, label=df.Site)
# draw parallels and meridians.
# label parallels on right and top
# meridians on bottom and left
parallels = np.arange(-90,90,30);
# labels = [left,right,top,bottom]
m.drawparallels(parallels,labels=[False,True,True,False], color="w");
meridians = np.arange(0,360,30);
m.drawmeridians(meridians,labels=[True,False,False,True], color="w");
#%%
df = pd.read_excel("insitu_list.xlsx", sheet_name="awsList")
fig = px.scatter_geo(df, lat="Lat", lon="Lon", color="Region",projection="natural earth")
fig.show()
# %%
awsLat = 46.37800701
awsLon = 7.488334039
date_start = '2014-07-09'
date_end = '2017-09-19'
pointValueFile = "Glacier de la Plaine Morte .csv"
# %% [markdown]
# # GEE
# %%
Map = geemap.Map()
Map
# %% [markdown]
# ## Albedo
# %%
def addVisnirAlbedo(image):
albedo = image.expression(
'0.7963 * Blue + 2.2724 * Green - 3.8252 * Red + 1.4143 * NIR + 0.2053',
{
'Blue': image.select('Blue'),
'Green': image.select('Green'),
'Red': image.select('Red'),
'NIR': image.select('NIR')
}
).rename('visnirAlbedo')
return image.addBands(albedo).copyProperties(image, ['system:time_start'])
''''if vis-nir bands albedo'''
rmaCoefficients = {
'itcpsL7': ee.Image.constant([-0.0084, -0.0065, 0.0022, -0.0768]),
'slopesL7': ee.Image.constant([1.1017, 1.0840, 1.0610, 1.2100]),
'itcpsS2': ee.Image.constant([0.0210, 0.0167, 0.0155, -0.0693]),
'slopesS2': ee.Image.constant([1.0849, 1.0590, 1.0759, 1.1583])
}; #rma
# rmaCoefficients = {
# 'itcpsL7': ee.Image.constant([-0.0084, -0.0065, 0.0022, -0.0768, -0.0314, -0.0022]),
# 'slopesL7': ee.Image.constant([1.1017, 1.0840, 1.0610, 1.2100, 1.2039, 1.2402]),
# 'itcpsS2': ee.Image.constant([0.0210, 0.0167, 0.0155, -0.0693, -0.0039, -0.0112]),
# 'slopesS2': ee.Image.constant([1.0849, 1.0590, 1.0759, 1.1583, 1.0479, 1.0148])
# }; #rma
# %%
# Function to get and rename bands of interest from OLI.
def renameOli(img):
return img.select(
['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5'], #'QA_PIXEL', 'QA_RADSAT'
['Blue', 'Green', 'Red', 'NIR']) #'QA_PIXEL', 'QA_RADSAT'
# Function to get and rename bands of interest from ETM+, TM.
def renameEtm(img):
return img.select(
['SR_B1', 'SR_B2', 'SR_B3', 'SR_B4'], #, 'QA_PIXEL', 'QA_RADSAT'
['Blue', 'Green', 'Red', 'NIR']) #, 'QA_PIXEL', 'QA_RADSAT'
# Function to get and rename bands of interest from Sentinel 2.
def renameS2(img):
return img.select(
['B2', 'B3', 'B4', 'B8', 'QA60', 'SCL'],
['Blue', 'Green', 'Red', 'NIR', 'QA60', 'SCL']
)
def oli2oli(img):
return img.select(['Blue', 'Green', 'Red', 'NIR']) \
.toFloat()
def etm2oli(img):
return img.select(['Blue', 'Green', 'Red', 'NIR']) \
.multiply(rmaCoefficients["slopesL7"]) \
.add(rmaCoefficients["itcpsL7"]) \
.toFloat()
# .round() \
# .toShort()
# .addBands(img.select('pixel_qa'))
def s22oli(img):
return img.select(['Blue', 'Green', 'Red', 'NIR']) \
.multiply(rmaCoefficients["slopesS2"]) \
.add(rmaCoefficients["itcpsS2"]) \
.toFloat()
# .round() \
# .toShort() # convert to Int16
# .addBands(img.select('pixel_qa'))
def imRangeFilter(image):
maskMax = image.lt(1)
maskMin = image.gt(0)
return image.updateMask(maskMax).updateMask(maskMin)
'''
Cloud mask for Landsat data based on fmask (QA_PIXEL) and saturation mask
based on QA_RADSAT.
Cloud mask and saturation mask by sen2cor.
Codes provided by GEE official. '''
# the Landsat 8 Collection 2
def maskL8sr(image):
# Bit 0 - Fill
# Bit 1 - Dilated Cloud
# Bit 2 - Cirrus
# Bit 3 - Cloud
# Bit 4 - Cloud Shadow
qaMask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturationMask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
# opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
# thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
#image.addBands(opticalBands, {}, True) \ maybe not available in python api
return image.select('SR_B.').multiply(0.0000275).add(-0.2) \
.updateMask(qaMask) \
.updateMask(saturationMask)
# the Landsat 4, 5, 7 Collection 2
def maskL457sr(image):
# Bit 0 - Fill
# Bit 1 - Dilated Cloud
# Bit 2 - Unused
# Bit 3 - Cloud
# Bit 4 - Cloud Shadow
qaMask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturationMask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
# opticalBands = image.select('SR_B.')
# opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
# thermalBand = image.select('ST_B6').multiply(0.00341802).add(149.0)
# Replace the original bands with the scaled ones and apply the masks.
return image.select('SR_B.').multiply(0.0000275).add(-0.2) \
.updateMask(qaMask) \
.updateMask(saturationMask)
#
# Function to mask clouds using the Sentinel-2 QA band
# @param {ee.Image} image Sentinel-2 image
# @return {ee.Image} cloud masked Sentinel-2 image
#
def maskS2sr(image):
qa = image.select('QA60')
# Bits 10 and 11 are clouds and cirrus, respectively.
cloudBitMask = 1 << 10
cirrusBitMask = 1 << 11
# Bits 1 is saturated or defective pixel
not_saturated = image.select('SCL').neq(1)
# Both flags should be set to zero, indicating clear conditions.
mask = qa.bitwiseAnd(cloudBitMask).eq(0) \
.And(qa.bitwiseAnd(cirrusBitMask).eq(0))
return image.updateMask(mask).updateMask(not_saturated).divide(10000)
# %%
# Define function to prepare OLI images.
def prepOli(img):
orig = img
img = maskL8sr(img)
img = renameOli(img)
img = oli2oli(img)
img = imRangeFilter(img)
img = addVisnirAlbedo(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames()))
# Define function to prepare ETM+/TM images.
def prepEtm(img):
orig = img
img = maskL457sr(img)
img = renameEtm(img)
img = etm2oli(img)
img = imRangeFilter(img)
img = addVisnirAlbedo(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames()))
# Define function to prepare S2 images.
def prepS2(img):
orig = img
img = renameS2(img)
img = maskS2sr(img)
img = s22oli(img)
img = imRangeFilter(img)
img = addVisnirAlbedo(img)
return ee.Image(img.copyProperties(orig, orig.propertyNames()).set('SATELLITE', 'SENTINEL_2'))
# %%
# https://developers.google.com/earth-engine/tutorials/community/intro-to-python-api-guiattard by https://github.com/guiattard
def ee_array_to_df(arr, list_of_bands):
"""Transforms client-side ee.Image.getRegion array to pandas.DataFrame."""
df = pd.DataFrame(arr)
# Rearrange the header.
headers = df.iloc[0]
df = pd.DataFrame(df.values[1:], columns=headers)
# Remove rows without data inside.
df = df[['longitude', 'latitude', 'time', *list_of_bands]].dropna()
# Convert the data to numeric values.
for band in list_of_bands:
df[band] = pd.to_numeric(df[band], errors='coerce')
# Convert the time field into a datetime.
df['datetime'] = pd.to_datetime(df['time'], unit='ms')
# Keep the columns of interest.
df = df[['time','datetime', *list_of_bands]]
return df
# %%
aoi = ee.Geometry.Point(awsLon, awsLat)
Map.addLayer(aoi)
# print(date_start)
# create filter for image collection
colFilter = ee.Filter.And(
ee.Filter.geometry(aoi), # filterbounds not available on python api https://github.com/google/earthengine-api/issues/83
ee.Filter.date(date_start, date_end)
# ee.Filter.calendarRange(5, 9, 'month'),
# ee.Filter.lt('CLOUD_COVER', 50)
)
s2colFilter = ee.Filter.And(
ee.Filter.geometry(aoi), # filterbounds not available on python api https://github.com/google/earthengine-api/issues/83
ee.Filter.date(date_start, date_end),
# ee.Filter.calendarRange(5, 9, 'month'),
ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 50)
)
oliCol = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') \
.filter(colFilter) \
.map(prepOli) \
.select(['visnirAlbedo'])
etmCol = ee.ImageCollection('LANDSAT/LE07/C02/T1_L2') \
.filter(colFilter) \
.filter(ee.Filter.calendarRange(1999, 2020, 'year')) \
.map(prepEtm) \
.select(['visnirAlbedo'])
tmCol = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2') \
.filter(colFilter) \
.map(prepEtm) \
.select(['visnirAlbedo'])
tm4Col = ee.ImageCollection('LANDSAT/LT04/C02/T1_L2') \
.filter(colFilter) \
.map(prepEtm) \
.select(['visnirAlbedo'])
s2Col = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") \
.filter(s2colFilter) \
.map(prepS2) \
.select(['visnirAlbedo'])
oli2Col = ee.ImageCollection('LANDSAT/LC09/C02/T1_L2') \
.filter(colFilter) \
.map(prepOli) \
.select(['visnirAlbedo'])
# landsatCol = etmCol.merge(tmCol)
landsatCol = oliCol.merge(etmCol).merge(tmCol).merge(tm4Col).merge(oli2Col)
multiSat = landsatCol.merge(s2Col).sort('system:time_start', True) # // Sort chronologically in descending order.
pointValue = multiSat.getRegion(aoi, 90).getInfo() # The number e.g. 500 is the buffer size
dfpoint = ee_array_to_df(pointValue, ['visnirAlbedo'])
dfpoint.to_csv(pointValueFile, mode='w', index=False, header=True)
# dfpoint.to_csv(pointValueFile, mode='a', index=False, header=False)
# %%
sns.set_theme(style="darkgrid", font="Arial", font_scale=2)
dfpoint["datetime"] = pd.to_datetime(dfpoint.datetime)
fig, ax = plt.subplots(figsize=(10,5))
sns.lineplot(data=dfpoint, x="datetime", y="visnirAlbedo", markers=True, marker="o")
ax.set(ylabel="albedo")
# %%