Skip to content

Latest commit

 

History

History
145 lines (114 loc) · 6.57 KB

README.md

File metadata and controls

145 lines (114 loc) · 6.57 KB

Softmax-free Linear Transformers

image

SOFT: Softmax-free Transformer with Linear Complexity,
Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao Xiang, Li Zhang
NeurIPS 2021

Softmax-free Linear Transformers,
Jiachen Lu, Junge Zhang, Xiatian Zhu, Jianfeng Feng, Tao Xiang, Li Zhang
IJCV 2024

What's new

  1. We propose a normalized softmax-free self-attention with stronger generalizability.
  2. SOFT is now avaliable on more vision tasks (object detection and semantic segmentation).

NEWS

  • [2024/02/12] Our journal extension Softmax-free Linear Transformer is accepted by IJCV.
  • [2022/07/05] SOFT is now available for downstream tasks! An efficient normalization is applied to SOFT. Please refer to SOFT-Norm

Requirments

  • timm==0.3.2

  • torch>=1.7.0 and torchvision that matches the PyTorch installation

  • cuda>=10.2

Compilation may be fail on cuda < 10.2.
We have compiled it successfully on cuda 10.2 and cuda 11.2.

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Installation

git clone https://github.com/fudan-zvg/SOFT.git
python -m pip install -e SOFT

Main results

ImageNet-1K Image Classification

Model Resolution Params FLOPs Top-1 % Config Pretrained Model
SOFT-Tiny 224 13M 1.9G 79.3 SOFT_Tiny.yaml, SOFT_Tiny_cuda.yaml SOFT_Tiny, SOFT_Tiny_cuda
SOFT-Small 224 24M 3.3G 82.2 SOFT_Small.yaml, SOFT_Small_cuda.yaml
SOFT-Medium 224 45M 7.2G 82.9 SOFT_Meidum.yaml, SOFT_Meidum_cuda.yaml
SOFT-Large 224 64M 11.0G 83.1 SOFT_Large.yaml, SOFT_Large_cuda.yaml
SOFT-Huge 224 87M 16.3G 83.3 SOFT_Huge.yaml, SOFT_Huge_cuda.yaml
SOFT-Tiny-Norm 224 13M 1.9G 79.4 SOFT_Tiny_norm.yaml SOFT_Tiny_norm
SOFT-Small-Norm 224 24M 3.3G 82.4 SOFT_Small_norm.yaml SOFT_Small_norm
SOFT-Medium-Norm 224 45M 7.2G 83.1 SOFT_Meidum_norm.yaml SOFT_Medium_norm
SOFT-Large-Norm 224 64M 11.0G 83.3 SOFT_Large_norm.yaml SOFT_Large_norm
SOFT-Huge-Norm 224 87M 16.3G 83.4 SOFT_Huge_norm.yaml

COCO Object Detection (2017 val)

Backbone Method lr schd box mAP mask mAP Params
SOFT-Tiny-Norm RetinaNet 1x 40.0 - 23M
SOFT-Tiny-Norm Mask R-CNN 1x 41.2 38.2 33M
SOFT-Small-Norm RetinaNet 1x 42.8 - 34M
SOFT-Small-Norm Mask R-CNN 1x 43.8 40.1 44M
SOFT-Medium-Norm RetinaNet 1x 44.3 - 55M
SOFT-Medium-Norm Mask R-CNN 1x 46.6 42.0 65M
SOFT-Large-Norm RetinaNet 1x 45.3 - 74M
SOFT-Large-Norm Mask R-CNN 1x 47.0 42.2 84M

ADE20K Semantic Segmentation (val)

Backbone Method Crop size lr schd mIoU Params
SOFT-Small-Norm UperNet 512x512 1x 46.2 54M
SOFT-Medium-Norm UperNet 512x512 1x 48.0 76M

Get Started

Train

We have two implementations of Gaussian Kernel: PyTorch version and the exact form of Gaussian function implemented by cuda. The config file containing cuda is the cuda implementation. Both implementations yield same performance. Please install SOFT before running the cuda version.

./dist_train.sh ${GPU_NUM} --data ${DATA_PATH} --config ${CONFIG_FILE}
# For example, train SOFT-Tiny on Imagenet training dataset with 8 GPUs
./dist_train.sh 8 --data ${DATA_PATH} --config config/SOFT_Tiny.yaml

Test

./dist_train.sh ${GPU_NUM} --data ${DATA_PATH} --config ${CONFIG_FILE} --eval_checkpoint ${CHECKPOINT_FILE} --eval

# For example, test SOFT-Tiny on Imagenet validation dataset with 8 GPUs

./dist_train.sh 8 --data ${DATA_PATH} --config config/SOFT_Tiny.yaml --eval_checkpoint ${CHECKPOINT_FILE} --eval

Reference

@inproceedings{SOFT,
    title={SOFT: Softmax-free Transformer with Linear Complexity}, 
    author={Lu, Jiachen and Yao, Jinghan and Zhang, Junge and Zhu, Xiatian and Xu, Hang and Gao, Weiguo and Xu, Chunjing and Xiang, Tao and Zhang, Li},
    booktitle={NeurIPS},
    year={2021}
}
@article{Softmax,
    title={Softmax-free Linear Transformers}, 
    author={Lu, Jiachen and Zhang, Li and Zhang, Junge and Zhu, Xiatian and Feng, Jianfeng and Xiang, Tao},
    journal={International Journal of Coumputer Vision},
    year={2024}
}

License

MIT

Acknowledgement

Thanks to previous open-sourced repo:
Detectron2
T2T-ViT
PVT
Nystromformer
pytorch-image-models