forked from doolin/patentprocessor
-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathconsolidate.py
executable file
·175 lines (161 loc) · 8.95 KB
/
consolidate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python
"""
Copyright (c) 2013 The Regents of the University of California, AMERICAN INSTITUTES FOR RESEARCH
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
"""
@author Gabe Fierro gt.fierro@berkeley.edu github.com/gtfierro
"""
"""
Takes the existing database (as indicated by the alchemy configuration file) and creates
a dump CSV file with the appropriate columns as needed for the disambiguation:
uuid, isgrant, ignore, name_first, name_last, patent number, mainclass, subclass, city, state, country, assignee, rawassignee, inventor_id
'record' refers to the unique tuple of (rawinventor, document number)
uuid: unique identifier assigned to this raw inventor
isgrant: true if this record is a granted patent (as opposed to a published application)
ignore: true if this record is an application that has been granted
name_first: first name of the raw inventor on this record
name_last: last name of the raw inventor on this record
patent number: the document number of this record. Will either be a patent number or an application number
mainclass: the primary main classification of this patent
subclass: the primary subclassification of this patent
city, state, country: the disambiguated location of the rawinventor on this record. To avoid having null
entries in these columns, locations are (in order of precedence) disambiguated rawinventor location,
rawinventor rawlocation, disambiguated location of primary inventor (under the assumption that
coinventor are more likely to be colocated than not).
assignee: disambiguated assignee organization name OR first/last name of assignee (one or the other -- documents do not contain both)
rawassignee: raw assignee organization name OR first/last name of rawassignee as listed on this record
inventor_id: disambiguated inventor id assigned to the rawinventor on this record from the last inventor
disambiguation run. NULL if this rawinventor record is new.
"""
import codecs
from lib import alchemy
from lib.assignee_disambiguation import get_cleanid
from lib.handlers.xml_util import normalize_utf8
from sqlalchemy.orm import joinedload, subqueryload
from sqlalchemy import extract
from datetime import datetime
import pandas as pd
import sys
#TODO: for ignore rows, use the uuid instead (leave blank if not ignore) and use that to link the ids together for integration
# create CSV file row using a dictionary. Use `ROW(dictionary)`
# isgrant: 1 if granted patent, 0 if application
# ignore: 1 if the record has a granted patent, 0 else
ROW = lambda x: u'{uuid}\t{isgrant}\t{ignore}\t{name_first}\t{name_middle}\t{name_last}\t{number}\t{mainclass}\t{subclass}\t{city}\t{state}\t{country}\t{assignee}\t{rawassignee}\n'.format(**x)
def main(year, doctype):
# get patents as iterator to save memory
# use subqueryload to get better performance by using less queries on the backend:
# --> http://docs.sqlalchemy.org/en/latest/orm/tutorial.html#eager-loading
session = alchemy.fetch_session(dbtype=doctype)
schema = alchemy.schema.Patent
if doctype == 'application':
schema = alchemy.schema.App_Application
if year:
patents = (p for p in session.query(schema).filter(extract('year', schema.date) == year).options(subqueryload('rawinventors'), subqueryload('rawassignees'), subqueryload('classes')).yield_per(1))
else:
patents = (p for p in session.query(schema).options(subqueryload('rawinventors'), subqueryload('rawassignees'), subqueryload('classes')).yield_per(1))
i = 0
for patent in patents:
i += 1
if i % 100000 == 0:
print i, datetime.now()
try:
# create common dict for this patent
primrawloc = patent.rawinventors[0].rawlocation
if primrawloc:
primloc = patent.rawinventors[0].rawlocation.location
else:
primloc = primrawloc
mainclass = patent.classes[0].mainclass_id if patent.classes else ''
subclass = patent.classes[0].subclass_id if patent.classes else ''
row = {'number': patent.id,
'mainclass': mainclass,
'subclass': subclass,
'ignore': 0,
}
if doctype == 'grant':
row['isgrant'] = 1
elif doctype == 'application':
row['isgrant'] = 0
if patent.granted == True:
row['ignore'] = 1
row['assignee'] = get_cleanid(patent.rawassignees[0]) if patent.rawassignees else ''
row['assignee'] = row['assignee'].split('\t')[0]
row['rawassignee'] = get_cleanid(patent.rawassignees[0]) if patent.rawassignees else ''
row['rawassignee'] = row['rawassignee'].split('\t')[0]
# generate a row for each of the inventors on a patent
for ri in patent.rawinventors:
if not len(ri.name_first.strip()):
continue
namedict = {'name_first': ri.name_first, 'uuid': ri.uuid}
raw_name = ri.name_last.split(' ')
# name_last is the last space-delimited word. Middle name is everything before that
name_middle, name_last = ' '.join(raw_name[:-1]), raw_name[-1]
namedict['name_middle'] = name_middle
namedict['name_last'] = name_last
rawloc = ri.rawlocation
if rawloc:
if rawloc.location:
loc = rawloc.location
else:
loc = primloc
else:
loc = primloc
namedict['state'] = loc.state if loc else ''# if loc else rawloc.state if rawloc else primloc.state if primloc else ''
namedict['country'] = loc.country if loc else ''# if loc else rawloc.country if rawloc else primloc.country if primloc else ''
namedict['city'] = loc.city if loc else ''# if loc else rawloc.city if rawloc else primloc.city if primloc else ''
if '??' in namedict['state'] or len(namedict['state']) == 0:
namedict['state'] = rawloc.state if rawloc else primloc.state if primloc else ''
if '??' in namedict['country'] or len(namedict['country']) == 0:
namedict['country'] = rawloc.country if rawloc else primloc.country if primloc else ''
if '??' in namedict['city'] or len(namedict['city']) == 0:
namedict['city'] = rawloc.city if rawloc else primloc.city if primloc else ''
tmprow = row.copy()
tmprow.update(namedict)
newrow = normalize_utf8(ROW(tmprow))
with codecs.open('disambiguator.csv', 'a', encoding='utf-8') as csv:
csv.write(newrow)
except Exception as e:
print e
continue
def join(newfile):
"""
Does a JOIN on the rawinventor uuid field to associate rawinventors in this
round with inventor_ids they were assigned in the previous round of
disambiguation. This improves the runtime of the inventor disambiguator
"""
new = pd.read_csv(newfile,delimiter='\t',header=None, error_bad_lines=False)
new[0] = new[0].astype(str)
ses_gen = alchemy.session_generator(dbtype='grant')
s = ses_gen()
old = s.execute('select uuid, inventor_id from rawinventor where inventor_id != "";')
old = pd.DataFrame.from_records(old.fetchall())
old[0] = old[0].astype(str)
merged = pd.merge(new,old,on=0,how='left')
merged.to_csv('disambiguator_{0}.tsv'.format(datetime.now().strftime('%B_%d')), index=False, header=None, sep='\t')
if __name__ == '__main__':
for year in range(1975, datetime.today().year+1):
print 'Running year',year,datetime.now(),'for grant'
main(year, 'grant')
for year in range(2001, datetime.today().year+1):
print 'Running year',year,datetime.now(),'for application'
main(year, 'application')
# join files
join('disambiguator.csv')