-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_rsa.py
440 lines (374 loc) · 17.3 KB
/
learning_rsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import sys
from collections import defaultdict, OrderedDict
import numpy as np
from scipy.misc import logsumexp
from scipy import sparse
from visualization import print_matrix, plot_matrix
import training_instances as inst
from learning import LiteralTrainer, score, cost
import timing
random = np.random.RandomState(np.uint32(hash('train')))
def find_or_add(actual, alts):
try:
idx = alts.index(actual)
except ValueError:
idx = len(alts)
alts = alts + [actual]
return idx, alts
def log_loss_grad(vectorizer, x_actual, x_alts, y_actual, y_alts, scorer, w, verbose=0):
"""Return the gradient of the standard log-linear loss function
for a prediction `y_predicted` given the gold answer `y_actual`,
as a dict mapping feature names to gradient values.
Should be obsolete (use LiteralTrainer instead)."""
featurizations_tensor, weights, names = featurize_all(
vectorizer.phi, y_alts, [x_actual], w
)
#weights = vectorizer.vectorize(w).transpose()
scores = featurizations_tensor.dot(weights).toarray().flatten()
# Get the maximal score:
max_score = sorted(scores)[-1]
# Get all the candidates with the max score and chose one randomly:
y_tildes = [y_alt for s, y_alt in zip(scores, y_alts) if s == max_score]
y_tilde = y_tildes[random.choice(range(len(y_tildes)))]
phi_actual = vectorizer.phi(x_actual, y_actual)
phi_predicted = vectorizer.phi(x_actual, y_tilde)
grad = Counter(dict(phi_actual))
grad.subtract(phi_predicted)
return grad
class LSLTrainer(LiteralTrainer):
def __init__(self, use_adagrad=True,
samples_x=None, samples_y=None,
only_relevant_alts=False,
only_local_alts=False,
null_message=False,
*args, **kwargs):
super(LSLTrainer, self).__init__(*args, **kwargs)
self.use_adagrad = use_adagrad
self.samples_x = samples_x
self.samples_y = samples_y
self.null_message = null_message
self.only_relevant_alts = only_relevant_alts
self.only_local_alts = only_local_alts
def predict(self, x, w, messages, distractors):
messages = self.sample(messages, self.samples_x)
# no sampling of distractors, so we don't limit our accuracy
x_index, messages = find_or_add(x, messages)
if self.null_message:
messages = messages + ['']
literal_scores = log_softmax(np.array([[score(x_alt, y, self.phi, w) for y in distractors]
for x_alt in messages]),
axis=1)
speaker_scores = log_softmax(literal_scores, axis=0)
listener_scores = log_softmax(speaker_scores, axis=1)
#plot_matrix(listener_scores - literal_scores, messages, distractors)
listener_scores = listener_scores[x_index, :]
scores = zip(listener_scores, distractors)
# Get the maximal score:
max_score = sorted(scores)[-1][0]
# Get all the candidates with the max score and choose one randomly:
y_hats = [y for s, y in scores if s == max_score]
return y_hats[random.choice(range(len(y_hats)))]
def sample(self, alts, num_to_sample):
"""Choose `num_to_sample` elements randomly without replacement from `alts`. If
`num_to_sample` is None, non-positive, or greater than the size of `alts`, return
`alts`."""
if not num_to_sample or not (0 < num_to_sample < len(alts)):
return alts
return [alts[i] for i in random.choice(range(len(alts)), num_to_sample, replace=False)]
def gradient(self, x_actual, x_alts, y_actual, y_alts, w, verbose=0):
"""Gradient of the RSA L(S(L)) model."""
x_alts = self.sample(x_alts, self.samples_x)
y_alts = self.sample(y_alts, self.samples_y)
if self.null_message:
x_alts = x_alts + ['']
x_index, x_alts = find_or_add(x_actual, x_alts)
y_index, y_alts = find_or_add(y_actual, y_alts)
if verbose >= 2:
print('x_index = %d; len(x_alts) = %d' % (x_index, len(x_alts)))
featurizations_tensor, weights, names = featurize_all(self.vectorizer.phi,
y_alts, x_alts, w)
if verbose >= 2:
print('featurizations_tensor.shape:')
print(len(featurizations_tensor), featurizations_tensor[0].shape)
if verbose >= 3:
print_matrix(featurizations_tensor)
#weights = self.vectorizer.vectorize(w).transpose()
weights = weights.transpose()
if verbose >= 2:
print('weights.shape:')
print(weights.shape)
if verbose >= 3:
self.vectorizer.print_features(weights)
try:
literal_scores = log_softmax(np.hstack([feats_y.dot(weights).toarray()
for feats_y in featurizations_tensor]),
axis=1)
except ValueError:
print 'featurizations_tensor[0].shape: %s' % (featurizations_tensor[0].shape,)
print 'feats_y.shape: %s' % (feats_y.shape,)
print 'weights.shape: %s' % (weights.shape,)
print x_actual
print y_actual
raise
if verbose >= 3:
print('Literal scores:')
print_matrix(literal_scores)
literal_probs = sparse.csr_matrix(np.exp(literal_scores))
literal_expected_phi = np.sum((featurizations_tensor[yi].multiply(literal_probs[:, yi])
for yi in xrange(len(featurizations_tensor))), axis=2)
if verbose >= 3:
print('')
print('Literal-expected phi:')
print_matrix(literal_expected_phi)
literal_expected_phi = sparse.csr_matrix(literal_expected_phi)
grad_literal = [featurizations_tensor[yi] - literal_expected_phi
for yi in xrange(len(featurizations_tensor))]
if verbose >= 3:
print('')
print('Gradient of literal:')
print_matrix(grad_literal)
speaker_scores = log_softmax(literal_scores, axis=0)
if verbose >= 3:
print('')
print('Speaker scores:')
print_matrix(speaker_scores)
speaker_probs = sparse.csr_matrix(np.exp(speaker_scores))
speaker_expected_grad_literal = np.vstack(((grad_literal[yi].multiply(
speaker_probs[:, yi])).sum(axis=0)
for yi in xrange(len(featurizations_tensor))))
speaker_expected_grad_literal = np.array(speaker_expected_grad_literal)
if verbose >= 3:
print('')
print('Speaker-expected gradient of literal:')
print_matrix(speaker_expected_grad_literal)
grad_speaker = np.vstack((grad_literal[yi][x_index, :].toarray()
for yi in xrange(len(featurizations_tensor)))) - \
speaker_expected_grad_literal
if verbose >= 3:
print('')
print('Gradient of speaker:')
print_matrix(grad_speaker)
listener_scores = log_softmax(speaker_scores[x_index, :])
if verbose >= 3:
print('')
print('Listener scores:')
print_matrix(listener_scores)
listener_expected_grad_speaker = (grad_speaker *
np.exp(listener_scores)[:, np.newaxis]).sum(axis=0)
if verbose >= 3:
print('')
print('Listener-expected gradient of speaker:')
self.vectorizer.print_features(listener_expected_grad_speaker)
grad = grad_speaker[y_index, :] - listener_expected_grad_speaker
if verbose >= 3:
print('')
print('Gradient of listener (final gradient):')
self.vectorizer.print_features(grad)
return unvectorize(grad, names)
def SGD(self, D=None, l2_coeff=None, verbose=0):
"""Implements stochatic (sub)gradient descent. `D` should be an iterable
of `(id, x, y, domain, attrs)` tuples, where domain is a list of possible
outputs (`y in domain` should be `True`) and attrs is the list of object
properties expressed by `x`. `messages` should be a list of possible inputs."""
if verbose >= 1:
print 'Training with eta=%f, l2_coeff=%f, use_adagrad=%s' % \
(self.eta, self.l2_coeff, self.use_adagrad)
if self.only_relevant_alts:
D = inst.add_relevant_alts(D)
elif not self.only_local_alts:
# messages is the set of utterances observed in training, as a proxy for
# the set of all possible utterances.
messages = [d[1] for d in D]
l2_coeff = self.l2_coeff if l2_coeff == None else l2_coeff
self.vectorizer = FeatureVectorizer(phi=self.phi, verbose=verbose)
weights = defaultdict(float)
adagrad = defaultdict(lambda: 0.0)
timing.start_task('Iteration', self.T)
for iteration in range(self.T):
timing.progress(iteration)
#if verbose:
# print('Iteration %d of %d' % (iteration, self.T))
random.shuffle(D)
error = 0.0
update_mag = 0.0
timing.start_task('Example', len(D))
for i, d in enumerate(D):
timing.progress(i)
if self.only_relevant_alts or self.only_local_alts:
(id_, x, y, domain, attrs_, messages) = d
else:
(id_, x, y, domain, attrs_) = d[:5]
# Get all (score, y') pairs:
scores = [score(x, y_alt, self.phi, weights)+cost(y, y_alt) for y_alt in domain]
# Get the maximal score:
max_score = sorted(scores)[-1]
error += max_score - score(x, y, self.phi, weights)
# Compute the gradient of the objective function:
grad = self.gradient(x_actual=x, x_alts=messages,
y_actual=y, y_alts=domain,
w=weights, verbose=verbose)
# L2 regularization: subtract constant multiple of weight values
if l2_coeff:
for f in set(weights.keys()):
grad[f] -= l2_coeff * weights[f]
# Weight-update (a bit cumbersome because of the dict-based implementation):
if self.use_adagrad:
for f in set(grad.keys()):
adagrad[f] += grad[f] ** 2
if adagrad[f] != 0.0:
dw = self.eta * grad[f] / np.sqrt(adagrad[f])
weights[f] += dw
update_mag += dw ** 2
else:
for f in set(grad.keys()):
dw = self.eta * grad[f]
weights[f] += dw
update_mag += dw ** 2
timing.end_task()
if verbose:
print 'Error: %f' % error
print 'Weight update magnitude: %f' % update_mag
if error <= self.epsilon:
if verbose:
print "Terminating after %s iterations; error is minimized." % iteration
break
if update_mag <= self.epsilon:
if verbose:
print "Terminating after %s iterations; reached local minimum." % iteration
break
timing.end_task()
return (weights, error, iteration, messages)
def log_softmax(a, axis=None):
"""Return the log of the softmax function applied to the scores given by `a`
across the axis `axis` (default: softmax over all elements of `a`)."""
return a - logsumexp(a, axis, keepdims=True)
class LRUCache(object):
def __init__(self, compute_func, max_entries=None):
self.compute_func = compute_func
self.max_entries = max_entries
self.lookup = OrderedDict()
def __call__(self, *args):
key = tuple(id(a) for a in args)
if key in self.lookup:
result = self.lookup[key]
del self.lookup[key]
else:
result = self.compute_func(*args)
if self.max_entries and len(self.lookup) >= self.max_entries:
self.lookup.popitem(last=False)
self.lookup[key] = result
return result
def featurize_all(phi, y_alts, x_alts, weights):
dims_map = {}
names = []
next_dim = 0
vals_slices = []
r_slices = []
c_slices = []
for y in y_alts:
vals_slices.append([])
r_slices.append([])
c_slices.append([])
for row, x in enumerate(x_alts):
feat = phi(x, y)
for name, val in feat.iteritems():
vals_slices[-1].append(val)
r_slices[-1].append(row)
if name not in dims_map:
dims_map[name] = next_dim
names.append(name)
next_dim += 1
c_slices[-1].append(dims_map[name])
featurizations = [sparse.coo_matrix((vals, (r, c)),
shape=(len(x_alts), next_dim))
for vals, r, c in zip(vals_slices, r_slices, c_slices)]
weights_vec = sparse.coo_matrix(np.array([[weights[name] if name in weights else 0.0
for name in names]]))
return featurizations, weights_vec, names
def unvectorize(feat_vec, names):
"""Given features as a vector, return a dict pairing feature names
with values."""
return defaultdict(float, {name: feat_vec[i]
for i, name in enumerate(names)
if feat_vec[i] != 0})
class FeatureVectorizer(object):
def __init__(self, phi, cache=True, messages=[], data=[], verbose=0):
self.dims_map = {}
self.names = []
self.next_dim = 0
self.phi = phi
self.verbose = verbose
if cache:
self.mat_cache = LRUCache(self._compute_featurized)
else:
self.mat_cache = self._compute_featurized
self.preallocate(messages, data)
def preallocate(self, messages, data):
"""Pre-compute the dimensions for all possible features given a dataset `data`,
and a set of possible `messages`."""
if self.verbose >= 1:
print 'FeatureVectorizer: preallocating with %d messages, %d examples' % \
(len(messages), len(data))
y_alts = {}
for (_, _, _, domain, _) in data:
for y_alt in domain:
y_alts[str(y_alt)] = y_alt
if self.verbose >= 1:
print 'FeatureVectorizer: number of referents: %d' % (len(y_alts),)
for i, x in enumerate(messages):
if self.verbose >= 1 and i % 10 == 0:
print 'FeatureVectorizer: preallocating message %d of %d' % (i, len(messages))
for y in y_alts.values():
for name in self.phi(x, y):
self.get_dim(name)
def get_dim(self, name):
if name not in self.dims_map:
self.dims_map[name] = self.next_dim
self.names.append(name)
self.next_dim += 1
return self.dims_map[name]
def get_name(self, dim):
return self.names[dim]
def num_dims(self):
return self.next_dim
def _compute_featurized(self, y, x):
return self.vectorize(self.phi(x, y))
def featurize(self, y, x):
"""Return a sparse 1xn matrix of feature values for the utterance `x`
and the referent `y`."""
return self.mat_cache(y, x)
def featurize_all(self, y_alts, x_alts):
"""Given an iterable of referents `y_alts` and an iterable of utterances
`x_alts`, return a list of scipy sparse matrices representing the feature
values of (x, y), where each matrix in the list is for a different referent
`y` in `y_alts` and each row in that matrix is a different utterance in
`x_alts`."""
return [sparse.vstack([self.featurize(y, x) for x in x_alts])
for y in y_alts]
def vectorize(self, feats):
if isinstance(feats, dict):
feats = [feats]
triples = [(val, row, self.get_dim(name))
for row, feat in enumerate(feats)
for name, val in feat.iteritems()]
if not triples:
vals, r, c = [0], [0], [0]
else:
vals, r, c = zip(*triples)
return sparse.coo_matrix((vals, (r, c)),
shape=(len(feats), self.num_dims()))
def unvectorize(self, feat_vec):
"""Given features as a vector, return a dict pairing feature names
with values."""
return defaultdict(float, {name: feat_vec[i]
for i, name in enumerate(self.names)
if feat_vec[i] != 0})
def print_features(self, feat_vec, include_zeros=False):
print(type(feat_vec))
if hasattr(feat_vec, 'toarray'):
feat_vec = np.squeeze(feat_vec.toarray())
print(feat_vec.shape)
feats = self.unvectorize(feat_vec)
for k, v in feats.iteritems():
if include_zeros or v != 0.0:
print '%10s %s' % (v, k)