-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent_configurator.py
190 lines (155 loc) · 6.37 KB
/
agent_configurator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import json
import pymongo
from chatbot import Chatbot
from database import Database
from knowledge_base import KnowledgeBase
from search_engine import SearchEngine
from voice_assistant import VoiceAssistant
from web_interface import WebInterface
class AgentConfigurator:
def __init__(self):
self.llm_models = {}
self.human_input_sources = {}
self.tools = {}
self.input_sources = ["text", "voice", "image"]
# Configure agent's parameters based on mode
def configure_agent(self, agent_id, mode, source):
# Select the appropriate LLM model based on the task requirements and the agent's mode
llm_model = self._select_llm_model(mode, source)
if not llm_model:
print("Error: No compatible LLM model found.")
return False
# Define the human input source based on the task requirements and the agent's mode
human_input_source = self._define_human_input_source(mode)
if not human_input_source:
print("Error: No compatible human input source found.")
return False
# Choose the relevant tools based on the task requirements and the agent's mode
tools = self._choose_tools(mode)
if not tools:
print("Error: No compatible tools found.")
return False
# Configure agent's parameters based on mode and user's specifications
if not self._configure_llm_model(agent_id, llm_model):
return False
if not self._configure_human_input_source(agent_id, human_input_source):
return False
if not self._configure_tools(agent_id, tools):
return False
return True
# Select the appropriate LLM model based on the task requirements and the agent's mode
def _select_llm_model(self, mode, source):
# Check if LLM models have been loaded
if not self.llm_models:
self._load_llm_models(source)
# Select the appropriate LLM model based on the task requirements and the agent's mode
if mode in self.llm_models:
return self.llm_models[mode]
# Define the human input source based on the task requirements and the agent's mode
def _define_human_input_source(self, mode):
# Check if human input sources have been loaded
if not self.human_input_sources:
self._load_human_input_sources()
# Define the human input source based on the task requirements and the agent's mode
if mode in self.human_input_sources:
return self.human_input_sources[mode]
# Choose the relevant tools based on the task requirements and the agent's mode
def _choose_tools(self, mode):
# Check if tools have been loaded
if not self.tools:
self._load_tools(mode)
# Choose the relevant tools based on the task requirements and the agent's mode
if mode in self.tools:
return self.tools[mode]
else:
return None
def _select_input_source(self, mode):
if mode == "text":
return "text"
elif mode == "voice":
return "voice"
elif mode == "image":
return "image"
else:
return None
def _select_tools(self, mode):
if mode == "text":
return ["NLTK", "spaCy"]
elif mode == "voice":
return ["NLTK", "gensim"]
elif mode == "image":
return ["spaCy", "gensim"]
else:
return None
# Load LLM models from database or file system
def _load_llm_models(self, source):
if source == "database":
# Establish a connection to the database
client = pymongo.MongoClient("mongodb://localhost:27017/")
db = client["llm_models"]
collection = db["models"]
# Retrieve the LLM models from the database
models = {}
for model in collection.find():
models[model["name"]] = model["model"]
elif source == "file_system":
# Read the LLM models from the file system
models = {}
with open("llm_models.json", "r") as f:
data = json.load(f)
for model in data["models"]:
models[model["name"]] = model["model"]
else:
raise ValueError("Invalid source specified")
# Store the LLM models in a dictionary
self.llm_models = {
"text": models["GPT-2"],
"voice": models["Bert"],
"image": models["XLNet"]
}
return self.llm_models
# Configure agent's LLM model based on user's specifications
def _configure_llm_model(self, agent_id, llm_model):
# Configure agent's LLM model based on user's specifications
# ...
return True
# Load human input sources from database or file system
def _load_human_input_sources(self):
# Load human input sources from database or file system
# ...
# Store human input sources in dictionary
self.human_input_sources = {
"mode1": Chatbot(),
"mode2": VoiceAssistant(),
"mode3": WebInterface(),
# ...
}
# Configure agent's human input source based on user's specifications
def _configure_human_input_source(self, agent_id, human_input_source):
# Configure agent's human input source based on user's specifications
# ...
return True
# Load tools from database or file system
# Load tools from database or file system
def _load_tools(self, mode):
# Load tools from database or file system
# ...
# Choose relevant tools based on mode and task requirements
if mode == "mode1":
self.tools["knowledge_base"] = KnowledgeBase()
elif mode == "mode2":
self.tools["search_engine"] = SearchEngine()
elif mode == "mode3":
self.tools["database"] = Database()
# Store tools in dictionary
self.tools = {
"mode1": self.tools["knowledge_base"],
"mode2": self.tools["search_engine"],
"mode3": self.tools["database"],
# ...
}
# Configure agent's tools based on user's specifications
def _configure_tools(self, agent_id, tools):
# Configure agent's tools based on user's specifications
# ...
return True