-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLanding_Page.py
448 lines (365 loc) · 18 KB
/
Landing_Page.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
##LANDING PAGE
import streamlit as st
from feasible_flights import *
from constants import *
from init_functions import *
from gurobi_optimisation import *
from Leap_Quantum_Main import *
import pprint
import mailer
import constants_immutable
pp = pprint.PrettyPrinter(indent=4)
from Assign_Class import *
import json
import csv
from utils import *
## Global variables(Statistics)
total_impacted = 0
total_impacted_pax = 0
total_assigned = []
total_assigned_pax = []
total_non_assigned = []
upgrade_count = []
downgrade_count = []
same_city_count = []
diff_city_count = []
mean_arrival_delay = []
one_multi = []
multi_one = []
multi_multi = []
one_one = []
pnr_score_assigned = []
pnr_score_non_assigned = []
hybrid_results = []
def Landing_Page():
"""
Function that displays the landing Page and carry out all the operations in the pipeline
"""
def writeStatistics():
f=open("stats.py","w")
f.write("total_impacted = "+str(total_impacted)+"\n")
write_list_to_file("total_assigned",total_assigned,f)
write_list_to_file("total_non_assigned",total_non_assigned,f)
write_list_to_file("upgrade_count",upgrade_count,f)
write_list_to_file("downgrade_count",downgrade_count,f)
write_list_to_file("same_city_count",same_city_count,f)
write_list_to_file("diff_city_count",diff_city_count,f)
write_list_to_file("mean_arrival_delay",mean_arrival_delay,f)
f.write("pnr_score_assigned = [")
for solution in range(len(pnr_score_assigned)):
list=pnr_score_assigned[solution]
if solution!=len(pnr_score_assigned)-1:
f.write("[")
for i in range(len(list)):
if i!=len(list)-1:
f.write(str(list[i])+",")
else:
f.write(str(list[i]))
f.write("]")
f.write(",")
else:
f.write("[")
for i in range(len(list)):
if i!=len(list)-1:
f.write(str(list[i])+",")
else:
f.write(str(list[i]))
f.write("]")
f.write("]\n")
f.write("pnr_score_non_assigned = [")
for solution in range(len(pnr_score_non_assigned)):
list=pnr_score_non_assigned[solution]
if solution!=len(pnr_score_non_assigned)-1:
f.write("[")
for i in range(len(list)):
if i!=len(list)-1:
f.write(str(list[i])+",")
else:
f.write(str(list[i]))
f.write("]")
f.write(",")
else:
f.write("[")
for i in range(len(list)):
if i!=len(list)-1:
f.write(str(list[i])+",")
else:
f.write(str(list[i]))
f.write("]")
f.write("]\n")
f.close()
def display_results(hybrid_results):
"""
Display results in streamlit interface
"""
if (len(hybrid_results)==2):
col1,col2=st.columns(2)
with col1:
#first solution
st.write("Solution 1")
st.write("Total impacted PNRs are :",total_impacted)
st.write("Reaccommodated PNRs :",total_assigned[0])
st.write("Total impacted PAX are :",total_impacted_pax)
st.write("Reaccommodated PAX :",total_assigned_pax[0])
st.write("PNRs Upgraded :",upgrade_count[0])
st.write("PNRs Downgraded :",downgrade_count[0])
st.write("PNRs with city pairs same :",same_city_count[0])
st.write("PNRs with city pairs different :",diff_city_count[0])
st.write("Mean Arrival Delay(in Hours) :",mean_arrival_delay[0])
st.write("Multi-Multi(%) :",multi_multi[0])
with col2:
#second solution
st.write("Solution 2")
st.write("Total impacted PNRs are :",total_impacted)
st.write("Reaccommodated PNRs :",total_assigned[1])
st.write("Total impacted PAX are :",total_impacted_pax)
st.write("Reaccommodated PAX :",total_assigned_pax[1])
st.write("PNRs Upgraded :",upgrade_count[1])
st.write("PNRs Downgraded :",downgrade_count[1])
st.write("PNRs with city pairs same :",same_city_count[1])
st.write("PNRs with city pairs different :",diff_city_count[1])
st.write("Mean Arrival Delay(in Hours) :",mean_arrival_delay[1])
st.write("Multi-Multi(%) :",multi_multi[1])
else:
col1,col2,col3=st.columns(3)
with col1:
#first solution
st.write("Solution 1")
st.write("Total impacted PNRs are :",total_impacted)
st.write("Reaccommodated PNRs :",total_assigned[0])
st.write("Total impacted PAX are :",total_impacted_pax)
st.write("Reaccommodated PAX :",total_assigned_pax[0])
st.write("PNRs Upgraded :",upgrade_count[0])
st.write("PNRs Downgraded :",downgrade_count[0])
st.write("PNRs with city pairs same :",same_city_count[0])
st.write("PNRs with city pairs different :",diff_city_count[0])
st.write("Mean Arrival Delay(in Hours) :",mean_arrival_delay[0])
st.write("One-One(%) :",one_one[0])
st.write("One-Multi(%) :",one_multi[0])
st.write("Multi-One(%) :",multi_one[0])
st.write("Multi-Multi(%) :",multi_multi[0])
with col2:
#second solution
st.write("Solution 2")
st.write("Total impacted PNRs are :",total_impacted)
st.write("Reaccommodated PNRs :",total_assigned[1])
st.write("Total impacted PAX are :",total_impacted_pax)
st.write("Reaccommodated PAX :",total_assigned_pax[1])
st.write("PNRs Upgraded :",upgrade_count[1])
st.write("PNRs Downgraded :",downgrade_count[1])
st.write("PNRs with city pairs same :",same_city_count[1])
st.write("PNRs with city pairs different :",diff_city_count[1])
st.write("Mean Arrival Delay(in Hours) :",mean_arrival_delay[1])
st.write("One-One(%) :",one_one[1])
st.write("One-Multi(%) :",one_multi[1])
st.write("Multi-One(%) :",multi_one[1])
st.write("Multi-Multi(%) :",multi_multi[1])
with col3:
#third solution
st.write("Solution 3")
st.write("Total impacted PNRs are :",total_impacted)
st.write("Reaccommodated PNRs :",total_assigned[2])
st.write("Total impacted PAX are :",total_impacted_pax)
st.write("Reaccommodated PAX :",total_assigned_pax[2])
# st.write("Unaccomadated PNRs :",total_non_assigned[2])
st.write("PNRs Upgraded :",upgrade_count[2])
st.write("PNRs Downgraded :",downgrade_count[2])
st.write("PNRs with city pairs same :",same_city_count[2])
st.write("PNRs with city pairs different :",diff_city_count[2])
st.write("Mean Arrival Delay(in Hours) :",mean_arrival_delay[2])
st.write("One-One(%) :",one_one[2])
st.write("One-Multi(%) :",one_multi[2])
st.write("Multi-One(%) :",multi_one[2])
st.write("Multi-Multi(%) :",multi_multi[2])
def Main_function():
"""
Contains the pipeline
"""
## Initiating global access to statistic variables
global total_impacted
global total_impacted_pax
global total_assigned
global total_assigned_pax
global total_non_assigned
global upgrade_count
global downgrade_count
global diff_city_count
global same_city_count
global mean_arrival_delay
global one_multi
global one_one
global multi_multi
global multi_one
global pnr_score_assigned
global pnr_score_non_assigned
global hybrid_results
# Initializing immutable objects
constants_immutable.all_flights, constants_immutable.pnr_objects, constants_immutable.pnr_flight_mapping, constants_immutable.pnr_to_s2 = Get_All_Maps()
## Normalizing variables
init_normalize_factors()
Dp1={}
# Identify the impacted PNRs
from timings import timings_dict
Impacted_PNR = Get_Impacted_passengers(constants_immutable.all_flights, constants_immutable.pnr_objects)
print("Total impacted Passengers: ",len(Impacted_PNR))
total_impacted = len(Impacted_PNR)
timings_dict["Impacted_PNR"] = total_impacted
# Quantum Pipeline
quantum_result =quantum_optimize_flight_assignments(Impacted_PNR,QSol_count=3)
print("Quantum Part done")
print("Total Reassigned: ",len(quantum_result[0]['Assignments']))
print()
for i in range(len(quantum_result)):
hybrid_results.append([])
pnr_score_assigned.append([])
pnr_score_non_assigned.append([])
# Network flow pipeline
for i in range(len(quantum_result)):
final_result = Cabin_to_Class(quantum_result[i]["Assignments"])
# Statistics
total_assigned.append(len(quantum_result[i]["Assignments"]))
total_impacted_pax = GetTotalPAX(quantum_result[i]["Assignments"], 1)
total_assigned_pax.append(total_impacted_pax)
total_impacted_pax += GetTotalPAX(quantum_result[i]["Non Assignments"], 0)
same_city_count.append(len((quantum_result[i]["Assignments"])))
total_non_assigned.append(total_impacted-len(quantum_result[i]["Assignments"]))
for pnr_flight_tuple in quantum_result[i]["Assignments"]:
pnr_score_assigned[i].append(pnr_flight_tuple[0].get_pnr_score())
json_final = AssignmentsToJSON(final_result)
with open(f'result_quantum_{i}.json', 'w') as f:
f.write(json_final)
hybrid_results[i].append(f'result_quantum_{i}.json')
print(f"Network Flow - {i} done")
print()
## Delays
temp1, temp2, temp3 = up_dn_arr_delay(json_final)
upgrade_count.append(temp1)
downgrade_count.append(temp2)
mean_arrival_delay.append(temp3)
## One-Multi calculation
temp1, temp2, temp3, temp4 = count_one_multi(json_final)
one_one.append(temp1)
one_multi.append(temp2)
multi_one.append(temp3)
multi_multi.append(temp4)
# City Pairs Handling
if constants_immutable.city_pairs_reqd:
for i in range(len(quantum_result)):
city_pairs_result = optimize_flight_assignments(quantum_result[i]['Non Assignments'],Dp1,True)
print(f"City Pairs- {i} done")
print("Total Assignments with different City-Pairs: ", len(city_pairs_result['Assignments']))
##Statistics
total_assigned[i]+=len(city_pairs_result['Assignments'])
total_assigned_pax[i] += GetTotalPAX(city_pairs_result["Assignments"], 1)
total_non_assigned[i]-=len(city_pairs_result['Assignments'])
diff_city_count.append(len(city_pairs_result['Assignments']))
for pnr_flight_tuple in city_pairs_result["Assignments"]:
pnr_score_assigned[i].append(pnr_flight_tuple[0].get_pnr_score())
final_result = Cabin_to_Class(city_pairs_result["Assignments"])
print(f"City-Pair Network Flow - {i} done")
print()
print(f"Final Assignments Got for city pairs- {i}")
json_final = AssignmentsToJSON(final_result)
with open(f'exception_list_{i}.json', 'w') as f:
f.write(json_final)
hybrid_results[i].append(f'exception_list_{i}.json')
##Statistics
temp1, temp2, temp3 = up_dn_arr_delay(json_final)
upgrade_count[i]+=temp1
downgrade_count[i]+=temp2
mean_arrival_delay[i]+=temp3
mean_arrival_delay[i]/=total_assigned[i]
mean_arrival_delay[i] = round(mean_arrival_delay[i], 3)
temp1, temp2, temp3, temp4 = count_one_multi(json_final)
one_one[i]+=temp1
one_one[i]=(one_one[i]*100)/total_assigned[i]
one_multi[i]+=temp2
one_multi[i]=(one_multi[i]*100)/total_assigned[i]
multi_one[i]+=temp3
multi_one[i]=(multi_one[i]*100)/total_assigned[i]
multi_multi[i]+=temp4
multi_multi[i]=(multi_multi[i]*100)/total_assigned[i]
final_non_assignments = set() # Use a set to store unique pnr_number values
for j in range(len(city_pairs_result['Non Assignments'])):
pnr_number = city_pairs_result['Non Assignments'][j].pnr_number
pnr_score_non_assigned[i].append(city_pairs_result['Non Assignments'][j].get_pnr_score())
if "#" in pnr_number:
some_number = pnr_number.split("#")[0]
else:
some_number = pnr_number
final_non_assignments.add(some_number)
# Convert the set to a newline-separated string
final_non_assignments_str = "\n".join(final_non_assignments)
with open(f'non_assignments_{i}.json', 'w') as f:
f.write(final_non_assignments_str)
hybrid_results[i].append(f'non_assignments_{i}.json')
else:
for i in range(len(quantum_result)):
mean_arrival_delay[i]/=total_assigned[i]
mean_arrival_delay[i] = round(mean_arrival_delay[i], 3)
one_one[i]=(one_one[i]*100)/total_assigned[i]
one_multi[i]=(one_multi[i]*100)/total_assigned[i]
multi_one[i]=(multi_one[i]*100)/total_assigned[i]
multi_multi[i]=(multi_multi[i]*100)/total_assigned[i]
diff_city_count.append(0)
final_non_assignments = set() # Use a set to store unique pnr_number values
for j in range(len(quantum_result[i]['Non Assignments'])):
pnr_number = quantum_result[i]['Non Assignments'][j].pnr_number
pnr_score_non_assigned[i].append(quantum_result[i]['Non Assignments'][j].get_pnr_score())
if "#" in pnr_number:
some_number = pnr_number.split("#")[0]
else:
some_number = pnr_number
final_non_assignments.add(some_number)
# Convert the set to a newline-separated string
final_non_assignments_str = "\n".join(final_non_assignments)
with open(f'non_assignments_{i}.txt', 'w') as f:
f.write(final_non_assignments_str)
hybrid_results[i].append(f'non_assignments_{i}.txt')
timings_dict["Name"]=test_PNR_data_file
# Uncomment to print the timings
# #To print statistics on landing page
# csv_file_path = "timings_data.csv"
# # Check if the CSV file exists and write data
# file_exists = os.path.exists(csv_file_path)
# with open(csv_file_path, mode='a', newline='') as csv_file:
# fieldnames = timings_dict.keys()
# writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
# # If the file doesn't exist, write the header row
# if not file_exists:
# writer.writeheader()
# # Write the data
# writer.writerow(timings_dict)
display_results(hybrid_results)
#To write current statistics in a file
writeStatistics()
#Title
st.title("🧳 Passenger Reaccommodation and Business Rule Engine")
st.write("This GUI allows you to modify scores for different business rules and customize your solution. Please proceed to the next three pages to do so.")
st.write("Click the below button after you have made all required modifications")
st.write()
constants_immutable.city_pairs_reqd=st.toggle("Different City-Pairs",value=True)
if st.button("Generate Solution Files"):
# To clear out the json files
with open('result_quantum_0.json', 'w') as file:
json.dump({},file)
with open('result_quantum_1.json', 'w') as file:
json.dump({},file)
with open('result_quantum_2.json', 'w') as file:
json.dump({},file)
with open('exception_list_0.json', 'w') as file:
json.dump({},file)
with open('exception_list_1.json', 'w') as file:
json.dump({},file)
with open('exception_list_2.json', 'w') as file:
json.dump({},file)
## Calling the pipeline
Main_function()
## Mailing option
st.write("Click the below button to send E-mails the impacted PNRs to notify them about their re-accomodation")
_,_,col3,_,_=st.columns(5)
with col3:
if st.button("Send Email"):
mailer.send_mail('result_quantum_0.json','result_quantum_1.json','result_quantum_2.json')
if __name__=="__main__":
Landing_Page()