-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
95 lines (79 loc) · 2.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.prepro import *
# from config import config, log_config
#
# img_path = config.TRAIN.img_path
import scipy
import numpy as np
import cv2
import numpy as np
def get_rand_offsets(img_h, img_w, wrg=384, hrg=384):
h, w = img_h, img_w
assert (h > hrg) and (w > wrg), "The size of cropping should smaller than the original image"
h_offset = int(np.random.uniform(0, h - hrg) - 1)
w_offset = int(np.random.uniform(0, w - wrg) - 1)
return (h_offset, w_offset)
def get_imgs_fn(file_name, path):
""" Input an image path and name, return an image array """
# return scipy.misc.imread(path + file_name).astype(np.float)
return scipy.misc.imread(path + file_name, mode='RGB')
def crop_sub_imgs_fn(x, is_random=True, h_offset=0, w_offset=0):
if is_random is False:
x = crop(x, wrg=384, hrg=384, is_random=is_random)
else:
wrg, hrg = 384, 384
x = x[h_offset:hrg + h_offset, w_offset:wrg + w_offset]
x = x / (255. / 2.)
x = x - 1.
return x
def downsample_fn(x):
shapex,shapey,shapez = np.shape(x)
## print("venkat",np.shape(x), type(x))
if shapez is 3:
# We obtained the LR images by downsampling the HR images using bicubic kernel with downsampling factor r = 4.
x = imresize(x, size=[96, 96], interp='bicubic', mode=None)
x = x / (255. / 2.)
x = x - 1.
elif shapez is 4:
rgb = x[:,:,:-1]
lir = x[:,:,3]
sx,sy = np.shape(lir)
lir=lir.reshape(sx,sy,1)
## print("venkat2",np.shape(rgb))
## print("venkat3",np.shape(lir))
rgb = imresize(rgb, size=[96, 96], interp='bicubic', mode=None)
rgb = rgb / (255. / 2.)
rgb = rgb - 1.
lir = imresize(lir, size=[96, 96], interp='bicubic', mode=None)
lir = lir / (255. / 2.)
lir = lir - 1.
x = np.concatenate((rgb,lir),axis=2)
else:
print("invalid shape to downsample")
return x
def downsample_by4_fn(x):
shapex,shapey,shapez = np.shape(x)
## print("venkat",np.shape(x), type(x))
if shapez is 3:
# We obtained the LR images by downsampling the HR images using bicubic kernel with downsampling factor r = 4.
x = imresize(x, size=[shapex//4, shapey//4], interp='bicubic', mode=None)
x = x / (255. / 2.)
x = x - 1.
elif shapez is 4:
rgb = x[:,:,:-1]
lir = x[:,:,3]
sx,sy = np.shape(lir)
lir=lir.reshape(sx,sy,1)
## print("venkat2",np.shape(rgb))
## print("venkat3",np.shape(lir))
rgb = imresize(rgb, size=[shapex//4, shapey//4], interp='bicubic', mode=None)
rgb = rgb / (255. / 2.)
rgb = rgb - 1.
lir = imresize(lir, size=[96, 96], interp='bicubic', mode=None)
lir = lir / (255. / 2.)
lir = lir - 1.
x = np.concatenate((rgb,lir),axis=2)
else:
print("invalid shape to downsample")
return x