-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprepare_faces_for_training_from_webcam.py
77 lines (63 loc) · 2.33 KB
/
prepare_faces_for_training_from_webcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
/*****************************************************
*
* Gabor Vecsei
* Email: vecseigabor.x@gmail.com
* Blog: https://gaborvecsei.wordpress.com/
* LinkedIn: www.linkedin.com/in/vecsei-gabor
* Github: https://github.com/gaborvecsei
*
*****************************************************/
"""
import json
import os
import cv2
# Read the settings file
with open('settings_for_recognition.json') as settings_file:
settings = json.load(settings_file)
# When we run it without custom args read from the settings json config file
outputFolderPath = settings['output_folder']
# Who is the person...
personName = ""
nameInput = raw_input("Please enter the peron's name: ")
# Create the output folder
outputPath = os.path.join(outputFolderPath, nameInput)
# If we don't have the output folder with the correct name, we have to make it
if not os.path.exists(outputPath):
os.makedirs(outputPath)
# Loading the face cascade
face_cascade = cv2.CascadeClassifier(settings['face_cascade_path'])
cap = cv2.VideoCapture(0)
number = 0
while (True):
# Capture frame-by-frame
ret, frame = cap.read()
if ret is True:
debugFrame = frame
grayImage = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect the faces
faces = face_cascade.detectMultiScale(
grayImage,
scaleFactor=settings["scaleFactor"],
minNeighbors=settings["minNeighbors"],
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE)
# Crop out and save faces
for face in faces:
(x, y, w, h) = face
if cv2.waitKey(1) & 0xFF == ord('k'):
# Crop out the face
croppedFace = frame[y:y + h, x:x + w]
# Save the face to the output folder
number += 1
fullImagePath = outputPath + "/" + str(number) + "_.jpg"
cv2.imwrite(fullImagePath, croppedFace)
print "Face detected and cropped: " + fullImagePath
cv2.rectangle(debugFrame, (x, y), (x + w, y + h), (225, 0, 0), 1)
# Display the resulting frame
cv2.imshow('Press k to save detection! Press q to quit.', debugFrame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()