-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdissimilarities_thresh.py
executable file
·53 lines (47 loc) · 2.26 KB
/
dissimilarities_thresh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python
import heapq
import numpy as np
import tempfile
import os
import tsh.obsolete as tsh; logger = tsh.create_logger(__name__)
from utils import read_weightsfile, read_argsfile, clean_args, write_listfile
def threshold_nearest(w, k=5, symmetric=True, **kwargs):
keep = np.zeros(w.shape, dtype=bool)
for j in range(w.shape[0]):
keep[j, heapq.nsmallest(k, range(w.shape[1]), key=lambda ind: w[j, ind])] = True
w[np.logical_not(keep + keep.T)] = np.inf
return w
method_table = {
'knn': { 'function': threshold_nearest }
}
def threshold_dissimilarity(method_name, method_args, w):
args = method_args.copy()
method_table[method_name]['function'](w, **args)
return args, w
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Thresholds given dissimilarities.')
#parser.add_argument('-c', '--config', dest='config', required=False, action='store', default=None, help='Path to the config file')
parser.add_argument('-m', '--method', dest='method', required=True, action='store', choices=method_table.keys(), default=None, help='Method name.')
parser.add_argument('-a', '--args', dest='args', required=False, action='store', default=None, help='Arguments file.')
parser.add_argument('-d', '--dissimilarities', dest='dissim', required=True, action='store', default=None, help='Dissimilarities file(s).')
#parser.add_argument('-o', '--output', dest='output', required=False, action='store', default=None, help='Output directory.')
opts = parser.parse_args()
#if opts.output == None:
# outdir = tempfile.mkdtemp(dir=os.curdir, prefix='out')
#else:
# outdir = opts.output
# if not os.path.exists(outdir):
# tsh.makedirs(outdir)
#config = tsh.read_config(opts, __file__)
meta, ids, w = read_weightsfile(opts.dissim)
args = meta
if opts.args != None:
args.update(read_argsfile(opts.args))
args, w = threshold_dissimilarity(opts.method, args, w)
cols = [str(i) for i in ids]
dissim = np.core.records.fromarrays(
[ids] + [w[:, i] for i in range(w.shape[1])],
dtype=zip(['id'] + cols, ['O'] + [np.float64] * len(cols)))
clean_args(args)
write_listfile(opts.dissim, dissim, **args)