-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgenerate.py
executable file
·61 lines (54 loc) · 2.49 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python
import numpy as np
import time
import tsh.obsolete as tsh; logger = tsh.create_logger(__name__)
from utils import read_argsfile, write_listfile, clean_args
def generate(N=None, priors=None, means=None, sigmas=None, feature_dims=None, weight_dims=None, noise_dims=None, **kwargs):
args = kwargs.copy()
n_feats = len(means)
assert n_feats == len(sigmas)
if noise_dims == None:
noise_dims = 0
assert n_feats == feature_dims + weight_dims + noise_dims
feature_names = ['f%02d' % d for d in range(n_feats)]
data = np.zeros(N, dtype=[('id', int), ('class', int)] + zip(feature_names, [np.float64]*n_feats))
data['id'] = range(N)
c = np.cumsum(priors).astype(float)
c /= c[-1]
targets = np.random.rand(N)
n_classes = len(priors)
data['class'] = 1
for i in range(n_classes):
data['class'][targets > c[i]] = i+2
k = data['class']-1
for d in range(n_feats):
mu = np.array(means)[d, k]
si = np.array(sigmas)[d, k]
data[feature_names[d]] = np.random.normal(mu, si)
args['priors'] = priors
args['means'] = means
args['sigmas'] = sigmas
args['class_labels'] = dict(zip(range(1, n_classes+1), [ 'C%02d' % i for i in range(1, n_classes+1) ]))
args['feature_names'] = feature_names[:feature_dims] + feature_names[feature_dims+weight_dims:]
args['weight_names'] = feature_names[feature_dims:feature_dims+weight_dims] + feature_names[feature_dims+weight_dims:]
args['truth'] = 'class'
return args, data
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Generate synthetic data.')
parser.add_argument('-c', '--config', dest='config', required=False, action='store', default=None, help='Path to the config file')
parser.add_argument('-a', '--args', dest='args', required=True, action='store', default=None, help='Method arguments file.')
parser.add_argument('--random-seed', dest='seed', required=False, action='store', type=int, default=-1, help='Random seed, by default use time.')
parser.add_argument('output', action='store', default=None, help='Output file.')
opts = parser.parse_args()
config = tsh.read_config(opts, __file__)
if opts.seed == -1:
seed = int(time.time()*1024*1024+time.time())
else:
seed = opts.seed
np.random.seed(seed)
args = read_argsfile(opts.args)
args, data = generate(**args)
args['random_seed'] = seed
clean_args(args)
write_listfile(opts.output, data, **args)