-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_synthetic.py
executable file
·103 lines (97 loc) · 5.04 KB
/
plot_synthetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python
import matplotlib; matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import tempfile
import os
import tsh.obsolete as tsh; logger = tsh.create_logger(__name__)
from utils import read_listfile
from colormaps import get_synthetic_colors
matplotlib.rcParams['svg.fonttype'] = 'none'
matplotlib.rcParams['savefig.bbox'] = 'tight'
matplotlib.rcParams['savefig.pad_inches'] = 0.01
matplotlib.rcParams['figure.figsize'] = (2, 2)
matplotlib.rcParams['figure.subplot.left'] = 0.125
matplotlib.rcParams['figure.subplot.right'] = 0.9
matplotlib.rcParams['figure.subplot.bottom'] = 0.1
matplotlib.rcParams['figure.subplot.top'] = 0.9
extension = '.svg'
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Plot two features from a file.')
parser.add_argument('-c', '--config', dest='config', required=False, action='store', default=None, help='Path to the config file')
parser.add_argument('-x', dest='x_feature', required=True, action='store', default=None, help='X-axis feature.')
parser.add_argument('-y', dest='y_feature', required=True, action='store', default=None, help='Y-axis feature.')
parser.add_argument('--x-label', dest='x_label', required=False, action='store', default=None, help='X-axis label.')
parser.add_argument('--y-label', dest='y_label', required=False, action='store', default=None, help='Y-axis label.')
parser.add_argument('--no-y-ticks', dest='no_y_ticks', required=False, action='store_true', default=False, help='Do not put ticks on Y-axis.')
parser.add_argument('--legend', dest='legend', required=False, action='store_true', default=False, help='Plot legend.')
parser.add_argument('-t', '--truth', dest='truth', required=False, action='store', default=None, help='Truth file.')
parser.add_argument('-p', '--pred', dest='pred', required=False, action='store', default=None, help='Prediction file.')
parser.add_argument('-l', '--list', dest='list', required=False, action='store', default=None, help='List file.')
parser.add_argument('-o', '--output', dest='output', required=False, action='store', default=None, help='Output directory.')
opts = parser.parse_args()
if opts.truth == None and (opts.pred == None or opts.list == None):
raise ValueError('Either truth file (containing both features and labels) or predictions (containing labels) and list files (containing features) have to be specified.')
if opts.output == None:
outdir = tempfile.mkdtemp(dir=os.curdir, prefix='out')
logger.info('Output directory %s', outdir)
else:
outdir = opts.output
if not os.path.exists(outdir):
tsh.makedirs(outdir)
config = tsh.read_config(opts, __file__)
if opts.truth != None:
meta, data = read_listfile(opts.truth)
target = data['class']
basename = os.path.splitext(os.path.basename(opts.truth))[0]
if opts.truth.endswith('.gz'):
basename = os.path.splitext(basename)[0]
else:
meta, data = read_listfile(opts.list)
pred_meta, pred = read_listfile(opts.pred)
#inputname = os.path.splitext(os.path.basename(opts.list))[0]
#if opts.list.endswith('.gz'):
# inputname = os.path.splitext(inputname)[0]
#assert pred_meta['input_name'] == inputname
assert (pred['id'] == data['id']).all()
target = pred['pred']
basename = os.path.splitext(os.path.basename(opts.pred))[0]
if opts.pred.endswith('.gz'):
basename = os.path.splitext(basename)[0]
try:
labels = meta[meta['truth'] + '_labels']
except:
labels = dict((n, 'Class %d' % n) for n in np.unique(target))
all_classes = sorted(labels.keys())
classes = np.unique(target)
colors = get_synthetic_colors()
shapes = np.array(['o', 's', '>'])[np.in1d(all_classes, classes)].tolist()
colors = np.array(colors)[np.in1d(all_classes, classes)].tolist()
for c, shape, color in zip(classes, shapes, colors):
mask = target == c
if mask.any():
plt.scatter(data[mask][opts.x_feature], data[mask][opts.y_feature], c=color, marker=shape, edgecolors='none', alpha=0.4)
plt.scatter(None, None, c=color, edgecolors='none', label=labels[c])
plt.hold(True)
if opts.x_label != None:
plt.xlabel(opts.x_label)
if opts.y_label != None:
plt.ylabel(opts.y_label)
plt.xticks([1,2,3], [1,2,3])
if opts.no_y_ticks:
plt.yticks([1,2,3], ['','',''])
else:
plt.yticks([1,2,3], [1,2,3])
if opts.legend:
plt.legend()
plt.savefig(os.path.join(outdir, basename + '-%s-vs-%s' % (opts.x_feature, opts.y_feature) + extension))
plt.close()
for f in [opts.x_feature, opts.y_feature]:
plt.hist([data[target == c][f] for c in classes], histtype='barstacked', color=colors, label=[labels[c] for c in classes])
plt.xlabel('Count')
plt.ylabel('Classes')
if opts.legend:
plt.legend()
plt.savefig(os.path.join(outdir, basename + '-%s' % f + extension))
plt.close()