-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathgraf 3D-Points.py
48 lines (38 loc) · 1.67 KB
/
graf 3D-Points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import matplotlib.pyplot as plt, numpy as np
from alpha_vantage.timeseries import TimeSeries as seriesAlpha
ticker = "GGAL"
serie = seriesAlpha(key='IUIHYQWABRBAMCH6', output_format='pandas')
data, metadata = serie.get_intraday(symbol=ticker,interval='1min', outputsize='full')
data.columns = ['Open','High','Low','Close','Volume']
n = 12 # filas y cols de la matriz de rangos nxn
quantiles = [i/n for i in range(n)]
precios = list(data.quantile(quantiles).Close.round(2))
volumenes = list(data.quantile(quantiles).Volume.round(2))
x = precios*n
y=[]
for volumen in volumenes:
for j in range(n):
y.append(volumen)
cantidades = [0 for i in range(100)]
data['vRank'] = (data.Volume.rank(pct=True)*n).apply(np.ceil)
data['pRank'] = (data.Close.rank(pct=True)*n).apply(np.ceil)
data['orden'] = (data.vRank-1)*n+data.pRank-1
dx = (data.Close.max()-data.Close.min())*(1/n)*0.05
dy = (data.Volume.mean())*(1/n)*0.1
dz = (data.groupby('orden').Volume.count())
plt.style.use('dark_background')
fig = plt.figure(figsize=(14, 7.8))
ax1 = fig.add_subplot(projection='3d')
ax1.bar3d(x, y, 0, dx, dy, list(dz), color='gray')
for a,b,c in zip(x,y,list(dz)):
ax1.plot(x,y,dz, "o", markersize=4, color='red')
ax1.set_title('Perfil Precio/Vol en velas de 1 minunto -- '+ticker, color='silver', fontsize=20, y=0.85)
ax1.xaxis.pane.fill = ax1.yaxis.pane.fill = ax1.zaxis.pane.fill = False
ax1.grid(False)
ax1.set_xlabel('Precio', fontsize=14)
ax1.set_ylabel('Volumen', fontsize=14)
ax1.set_zlabel('Cantidad Operaciones', fontsize=14)
ax1.xaxis.pane.set_edgecolor('k')
ax1.yaxis.pane.set_edgecolor('k')
ax1.zaxis.pane.set_edgecolor('k')
plt.show()