-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetectMailbox.py
82 lines (74 loc) · 3.22 KB
/
DetectMailbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import cv2 as cv
import numpy as np
class MailboxDetector:
def __init__(self, hsv_th, size, aspect_ratio_th=0.8, area_th=0.7, size_th=(10,300), color="Unknown"):
self.hsv_th = None
self.set_hsv_th(hsv_th[0], hsv_th[1])
self.size2 = size * size # real size in mm
self.aspect_ratio_th = aspect_ratio_th
self.area_th = area_th
self.size_th = size_th
self.kernel = np.ones((8,8),np.uint8) # create convolution
self.mask = None
self.color = color # color name
def detect(self, img, size_factor=None):
#blur = cv2.GaussianBlur(img,(5,5),0)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = None
for th in self.hsv_th:
hsv_min = np.array(th[0])
hsv_max = np.array(th[1])
if mask is None:
mask = cv2.inRange(hsv, hsv_min, hsv_max)
else:
mask += cv2.inRange(hsv, hsv_min, hsv_max)
self.mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, self.kernel) # opening
#cv2.imshow('mask '+self.color,mask)
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
#self.draw_all(img.copy(),cnts)
best_res = None
best_score = 0.
for cnt in cnts:
rect = cv2.minAreaRect(cnt)
_, (w, h), _ = rect
min_wh = min(w, h)
max_wh = max(w, h)
if min_wh == 0 or max_wh == 0:
continue
if min_wh < self.size_th[0] or max_wh > self.size_th[1]:
#print("not correct size")
continue # too small or too big
similarity = min_wh / max_wh
if similarity < self.aspect_ratio_th:
#print("not square")
continue # not enough square
area = w * h
score_area = area # if no size factor, keep biggest one
if size_factor is not None:
score_area = 1. / max(1., abs(area - self.size2 * size_factor)) # score according to expected size
#print(self.color, area, self.size2 * size_factor, score_area)
area_ratio = cv2.contourArea(cnt) / area
if area_ratio < self.area_th:
#print("not good ratio")
continue # not enough full of color
score = area_ratio * similarity * score_area
#print(score,best_score)
if score > best_score:
best_score = score
best_res = rect
return best_res
def draw_all(self, img, cnts):
for cnt in cnts:
box = cv2.boxPoints(cv2.minAreaRect(cnt))
ctr = np.array(box).reshape((-1,1,2)).astype(np.int32)
cv2.drawContours(img, [ctr], -1, (0, 255, 0), 4)
#cv2.imshow('contour '+self.color,img)
def set_hsv_th(self, th_min, th_max):
if th_min[0] < th_max[0]: # h min < h max, normal case
self.hsv_th = np.array([[th_min, th_max]])
else: # split into two parts
self.hsv_th = np.array([
[[0 , th_min[1], th_min[2]],[th_max[0], th_max[1], th_max[2]]],
[[th_min[0], th_min[1], th_min[2]],[179 , th_max[1], th_max[2]]]
])