-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChAmoroso.tex
684 lines (562 loc) · 30 KB
/
ChAmoroso.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\Sec{Amoroso Distribution}
\label{sec:Amoroso}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Amoroso}
The {\bf Amoroso} (generalized gamma, Stacy-Mihram) distribution~\cite{Amoroso1925,Johnson1994,Gonzalez2013} is a four parameter, continuous, univariate, unimodal probability density, with semi-infinite support. The functional form in the most straightforward parameterization is
\begin{align}
\label{Amoroso}
\opr{Amoroso}(x&\given a, \theta, \alpha, \beta)
\\ \notag&=
\frac{1}{\Gamma(\alpha)}
\Left|\frac{\beta}{\theta}\Right|
\Left(\frac{x-a}{\theta}\Right)^{\alpha \beta -1}
\exp \Left\{
- \Left(\frac{x-a}{\theta}\Right)^{\beta}
\Right\}
\checked
\\ \notag
& \text{for } x,\ a,\ \theta,\ \alpha,\ \beta\ \text{in } \mathbb{R},
\ \alpha>0, \
\\ \notag
& \text{support } x \geq a \ \text{if}\ \theta > 0, \ x\leq a \ \text{if}\ \theta < 0 .
\end{align}
The Amoroso distribution was originally developed to model lifetimes \cite{Amoroso1925}. It occurs as the Weibullization of the standard gamma distribution \eqref{Gamma} and, with integer $\alpha$, in extreme value statistics \eqref{GenFisherTippett}. The Amoroso distribution is itself a limiting form of various more general distributions, most notable the generalized beta \eqref{GenBeta} and generalized beta prime \eqref{GenBetaPrime} distributions~\cite{McDonald1984}.
Many common and interesting probability distributions are special cases or limiting forms of the Amoroso (See Table~\ref{AmorosoTable}).
The four real parameters of the Amoroso distribution consist of a location parameter~$a$,
a scale parameter~$\theta$, and two shape parameters,~$\alpha$ and~$\beta$. Whenever these symbols appears in special cases or limiting forms, they refer directly to the parameters of the Amoroso distribution.
The shape parameter $\alpha$ is positive, and in many special cases an integer, $\alpha=n$, or half-integer, $\alpha=\tfrac{k}{2}$. The negation of a standard parameter is indicated by a bar, e.g.\ $\bar{\beta} = -\beta$. The chi, chi-squared and related distributions are traditionally parameterized with the scale parameter $\sigma$, where $\theta= (2\sigma^2)^{1/{\beta}}$, and $\sigma$ is the standard deviation of a related normal distribution. Additional alternative parameters are introduced as necessary.
\pagebreak[4]
\begin{table}[tp]
\begin{center}
\caption[Amoroso distribution -- Special cases]{Special cases of the Amoroso family}
\label{AmorosoTable}
~\\
{\renewcommand{\arraystretch}{1.2}
\begin{tabular}{llccccl}
\eqref{Amoroso} & Amoroso & $a$ & $\theta$ & $\alpha$ & $\beta$ \\
\hline
\eqref{Stacy} & Stacy & $0$ & . & . & . \\
\eqref{HalfExpPower} & half exponential power & . & . & $\tfrac{1}{\beta}$ & . \\
\eqref{GenFisherTippett} & gen.\ Fisher-Tippett & . & . & $n$ & . \\
\eqref{FisherTippett} & Fisher-Tippett & . & . & 1 & . \\
\eqref{Frechet} &Fr\'{e}chet & . & . & 1 & $<\!\!0$ \\
\eqref{GenFrechet} & generalized Fr\'{e}chet & . & . & $n$ & $<\!\!0$ \\
\eqref{InvNakagami} & inverse Nakagami & . & . & . & -2 \\
\eqref{ScaledInvChi} &scaled inverse chi& 0 & . & $\tfrac{1}{2}k$ & -2 \\
\eqref{InvChi} & inverse chi & 0 & $\frac{1}{\sqrt{2}}$ & $\tfrac{1}{2}k$ & -2 \\
\eqref{InvMaxwell} & inverse Maxwell& 0 & . & $\frac{3}{2}$ & -2 \\
\eqref{InvRayleigh} & inverse Rayleigh & $0$ & . & $1$ & -2 \\
\eqref{InvHalfNormal} & inverse half normal & 0 & . & $\tfrac{1}{2}$ & -2 & \\
\eqref{InvGamma} & inverse gamma & . & . & . & -1 \\
\eqref{ScaledInvChiSqr} & scaled inverse chi-square & 0 & . & $\tfrac{1}{2}k$ & -1 \\
\eqref{InvChiSqr} & inverse chi-square & 0 & $\frac{1}{2}$ & $\tfrac{1}{2}k$ & -1 \\
\eqref{Levy} & L\'{e}vy & . & . & $\frac{1}{2}$ & -1 \\
\eqref{InvExp} & inverse exponential & 0 & . & 1 & -1 \\
\eqref{Gamma} &gamma & . & . & . & $1$ \\
%\eqref{Gamma} & Erlang & $0$ & $>\!\!0$ & $n$ & $1$ \\
%\eqref{StdGamma} &standard gamma & 0 & 1 & . & 1 \\
%\eqref{PorterThomas} & Porter-Thomas & 0 & 2 & $\tfrac{1}{2}$ & 1 \\
%\eqref{ScaledChiSqr} & scaled chi-square & 0 & . & $\tfrac{1}{2}k$ & 1 \\
%\eqref{ChiSqr} & chi-square & 0 & 2 & $\tfrac{1}{2}k$ & 1 \\
%\eqref{Exp} & exponential & . & . & $1$ & $1$ \\
%\eqref{Gamma} & Wien & 0 & . & 4& 1 \\
\eqref{Hohlfeld} & Hohlfeld & 0 & . & $\tfrac{2}{3}$ & $\tfrac{3}{2}$ \\
\eqref{Nakagami} & Nakagami & . & . & . & $2$ \\
\eqref{ScaledChi} &scaled chi& 0 & . & $\tfrac{1}{2}k$ & 2 \\
\eqref{Chi} & chi & 0 & $\sqrt{2}$ & $\tfrac{1}{2}k$ & 2 \\
\eqref{HalfNormal} & half normal & 0 & . & $\tfrac{1}{2}$ & 2 & \\
\eqref{Rayleigh} & Rayleigh & 0 & . & 1 & 2 \\
\eqref{Maxwell} & Maxwell& 0 & . & $\frac{3}{2}$ & 2 \\
\eqref{WilsonHilferty} &Wilson-Hilferty& 0 & . & . & 3 \\
\eqref{GenWeibull} & generalized Weibull & . & . & $n$ & $>\!\!0$ \\
\eqref{Weibull} & Weibull & . & . & 1 & $>\!\!0$ \\
\eqref{PseudoWeibull} & pseudo-Weibull & . & . & $1$+$\tfrac{1}{\beta}$ & $>\!\!0$
\\
& $(k,\ n\ \text{positive integers})$
\end{tabular}
}
\end{center}
For special cases of the gamma distribution ($\beta=1$) see table~\ref{GammaTable}.
\end{table}
\SSec{Special cases: Miscellaneous}
The gamma distribution ($\beta=1$) and it's special cases are detailed in \secref{sec:Gamma}.
\dist{Stacy} (anchored Amoroso, hyper gamma, generalized Weibull, Nukiyama-Tanasawa, generalized gamma, generalized semi-normal, Leonard hydrograph, hydrograph, transformed gamma) distribution~\cite{Stacy1962,Dadpay2007}:
\begin{align}
\label{Stacy}
\opr{Stacy}(x \given \theta, \alpha, \beta)
=& \frac{1}{\Gamma(\alpha)} \Left|\frac{\beta}{\theta}\Right| \Left(\frac{x}{\theta}\Right)^{\alpha\beta-1}
\exp \Left\{ -\Left(\frac{x}{\theta}\Right)^{\beta} \Right\} \checked
\\=& \opr{Amoroso}(x\given 0, \theta, \alpha, \beta) \notag \checked
\end{align}
If we drop the location parameter from $\opr{Amoroso}$, then we obtain the
Stacy, or generalized gamma distribution.
If $\beta$ is negative then the distribution is {\bf generalized inverse gamma}, the parent of various inverse distributions, including the inverse gamma \eqref{InvGamma} and inverse chi \eqref{InvChi}.
The Stacy distribution is obtained as the positive even powers, modulus, and powers of the modulus of a centered, normal random variable \eqref{Normal},
\[
\opr{Stacy}\Left((2\sigma^2)^{\tfrac{1}{\beta}} ,\tfrac{1}{2}, \beta\Right) \sim \Big|\opr{Normal}(0,\sigma)\Big|^{\tfrac{2}{\beta}}
\notag
\checked
\]
and as powers of the sum of squares of $k$ centered, normal random variables.
\[
\opr{Stacy}\Left( (2\sigma^2)^{\tfrac{1}{\beta}} ,\tfrac{1}{2}k, \beta\Right) \sim \Left( \sum_{i=1}^{k} \Bigl(\opr{Normal}(0,\sigma)\Bigr)^2\Right)^{\tfrac{1}{\beta}}
\notag
\checked
\]
\dist{Pseudo-Weibull} distribution~\cite{Voda1989}:
\begin{align}
\label{PseudoWeibull}
\opr{PseudoWeibull}(x\given a, \theta,\beta)
=& \frac{1}{\Gamma(1+\tfrac{1}{\beta})} \frac{\beta}{|\theta|} \Left(\frac{x-a}{\theta}\Right)^{\beta}
\exp \Left\{ -\Left(\frac{x-a}{\theta}\Right)^{\beta} \Right\} \checked
\\ & \text{for } \beta>0 \notag
\\=& \opr{Amoroso}(x\given a, \theta, 1+\tfrac{1}{\beta}, \beta) \notag \checked
\end{align}
Proposed as another model of failure times.
\dist{Half exponential power} (half Subbotin) distribution~\cite{Gui2013}:
\begin{align}
\label{HalfExpPower}
\opr{HalfExpPower}(x\given a, \theta,\beta)
=&
\frac{1}{\Gamma(\tfrac{1}{\beta})}
\Left|\frac{\beta}{\theta}\Right|
\exp \Left\{
- \Left(\frac{x-a}{\theta}\Right)^{\beta}
\Right\} \checked
\\=& \opr{Amoroso}(x\given a, \theta,\tfrac{1}{\beta}, \beta) \notag \checked
\end{align}
As the name implies, half an exponential power \eqref{ExpPower} distribution. Special cases include $\beta=-1$ inverse exponential \eqref{InvExp}, $\beta=1$ exponential \eqref{Exp}, $\beta=\tfrac{2}{3}$ Hohlfeld \eqref{Hohlfeld} and $\beta=2$ half normal \eqref{HalfNormal} distributions.
\dist{Hohlfeld} distribution~\cite{Hohlfeld2014}:
\begin{align}
\label{Hohlfeld}
\opr{Hohlfeld}(x\given a, \theta)
=&
\frac{1}{\Gamma(\tfrac{2}{3})}
\Left|\frac{3}{2\theta}\Right|
\exp \Left\{
- \Left(\frac{x-a}{\theta}\Right)^{3/2}
\Right\} \checked
\\=& \opr{HalfExpPower}(x\given a, \theta,\tfrac{3}{2}) \notag \checked
\\=& \opr{Amoroso}(x\given a, \theta,\tfrac{2}{3}, \tfrac{3}{2}) \notag \checked
\end{align}
Occurs in the extreme statistics of Brownian ratchets \cite[Suppl. p.5]{Hohlfeld2014}.
% ========================================================================
\SSec{Special cases: Positive integer \texorpdfstring{$\beta$}{beta}}
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfAmorosoBetaPDF}
\end{center}
\caption[Gamma, scaled chi and Wilson-Hilferty distributions]{Gamma, scaled chi, and Wilson-Hilferty distributions, $\opr{Amoroso}(x\given 0,1,2,\beta)$}
\end{figure}
With $\beta=1$ we obtain the gamma family of distributions: gamma \eqref{Gamma}, standard gamma \eqref{StdGamma} and chi square \eqref{ChiSqr} distributions. See \secref{sec:Gamma}.
\dist{Nakagami} (generalized normal, Nakagami-m, m) distribution~\cite{Nakagami1960}:
\begin{align}
\label{Nakagami}
\opr{Nakagami}&(x \given a , \theta, \alpha)
\\ \notag
& =
\frac{2}{\Gamma(\alpha) |\theta| }
\Left(\frac{x-a }{\theta}\Right)^{2\alpha -1}
\exp \Left\{
- \Left(\frac{x-a }{\theta}\Right)^{2}
\Right\}
\checked
\\ \notag
& = \opr{Amoroso}(x\given a,\theta, \alpha ,2) \checked
\notag
\end{align}
Used to model attenuation of radio signals that reach a receiver by multiple paths~\cite{Nakagami1960}.
\dist{Half normal} (semi-normal, positive definite normal, one-sided normal) distribution~\cite{Johnson1994}:
%
\begin{align}
\label{HalfNormal}
\opr{HalfNormal}(x \given a, \sigma )
&= \frac{2}{\sqrt{2\pi \sigma^2}}
\exp\Left\{-\Left( \frac{(x-a)^2}{2\sigma^2}\Right) \Right\}
\checked
\\
& \qquad (x-a)/\sigma>0 \notag \\
&= \opr{Amoroso}(x\given a, \sqrt{2\sigma^2} , \tfrac{1}{2}, 2) \notag \checked
\end{align}
The modulus of a normal distribution about the mean.
\dist{Chi} ($\chi$) distribution~\cite{Johnson1994}:
%
\begin{align}
\label{Chi}
\opr{Chi}(x \given k)
&= \frac{ \sqrt{2}}{\Gamma(\tfrac{k}{2})} { \Left(\frac{x}{\sqrt{2}}\Right)}^{k-1}
\exp\Left\{ -\Left( \frac{x^2}{2} \Right)\Right\} \checked
\\
& \qquad \text{for positive integer } k \notag \\
& = \opr{ScaledChi}(x\given 1,k) \notag \checked \\
&= \opr{Stacy}(x\given \sqrt{2}, \sfrac{k}{2}, 2) \notag \checked \\
&= \opr{Amoroso}(x\given 0, \sqrt{2} , \sfrac{k}{2}, 2) \notag \checked
\end{align}
The root-mean-square of $k$ independent standard normal variables, or the square root of a chi-square random variable.
\[
\opr{Chi}(k) \sim \sqrt{\opr{ChiSqr}(k)} \checked
\notag
\]
\dist{Scaled chi} (generalized Rayleigh) distribution~\cite{Miller1964,Johnson1994}:
\begin{align}
\opr{ScaledChi}(x \given \sigma, k)
&= \frac{2}{\Gamma(\tfrac{k}{2}) \sqrt{2\sigma^2}} { \Left(\frac{x}{\sqrt{2\sigma^2}}\Right)}^{k-1}
\exp\Left\{-\Left(\frac{x^2}{2\sigma^2}\Right)\Right\}
\notag \checked
\\
& \qquad \text{for positive integer } k \notag \checked \\
&= \opr{Stacy}(x\given \sqrt{2\sigma^2}, \tfrac{k}{2},2) \checked
\label{ScaledChi}
\\
&= \opr{Amoroso}(x \given 0, \sqrt{2\sigma^2}, \tfrac{k}{2}, 2) \checked
\notag
\end{align}
The root-mean-square of $k$ independent and identically distributed normal variables with zero mean and variance~$\sigma^2$.
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfAmorosoBeta2PDF}
\end{center}
\caption[Half normal, Rayleigh and Maxwell distributions]{Half normal, Rayleigh, and Maxwell distributions, $\opr{Amoroso}(x\given 0,1,\alpha,2)$}
\end{figure}
\dist{Rayleigh} (circular normal) distribution~\cite{Strutt1880,Johnson1994}:
%
\begin{align}
\label{Rayleigh}
\opr{Rayleigh}(x \given \sigma)
&= \frac{1}{\sigma^2 }\ x\ \exp\Left\{-\Left(\frac{x^2}{2 \sigma^2}\Right)\Right\} \checked
\\
&=\opr{ScaledChi}(x \given \sigma, 2) \notag \checked \\
&= \opr{Stacy}(x\given \sqrt{2\sigma^2} ,1,2) \notag \checked \\
&= \opr{Amoroso}(x\given 0, \sqrt{2\sigma^2} , 1, 2) \checked \notag
\end{align}
The root-mean-square of two independent and identically distributed normal variables with zero mean and variance $\sigma^2$.
For instance, wind speeds are approximately Rayleigh distributed, since the horizontal components of the velocity are approximately normal, and the vertical component is typically small~\cite{Justus1978}.
\dist{Maxwell} (Maxwell-Boltzmann, Maxwell speed, spherical normal) distribution~\cite{Maxwell1860, Abramowitz1965}:
%
\begin{align}
\label{Maxwell}
\opr{Maxwell}(x \given \sigma)
&= \frac{\sqrt{2}}{\sqrt{\pi} \sigma^3}\ x^2 \exp\Left\{-\Left(\frac{x^2}{2\sigma^2}\Right)\Right\} \checked
\\
%& x>0, \notag \\
&=\opr{ScaledChi}(x \given \sigma, 3) \checked \notag \\
&= \opr{Stacy}(x\given \sqrt{2\sigma^2} ,\tfrac{3}{2},2) \notag \checked\\
&= \opr{Amoroso}(x\given 0, \sqrt{2\sigma^2} , \tfrac{3}{2}, 2) \notag \checked
\end{align}
The speed distribution of molecules in thermal equilibrium. The root-mean-square of three independent and identically distributed normal variables with zero mean and variance $\sigma^2$.
\dist{Wilson-Hilferty} distribution~\cite{Wilson1931,Johnson1994}:
\begin{align}
\label{WilsonHilferty}
\opr{WilsonHilferty}(x \given \theta, \alpha)
&= \frac{3}{\Gamma(\alpha)|\theta|} \Left(\frac{x}{\theta}\Right)^{3 \alpha-1} \exp\Left\{-\Left(\frac{x}{\theta}\Right)^{3}\Right\}
\checked
\\
&= \opr{Stacy}(x\given \theta, \alpha, 3) \checked
\notag
\\ &= \opr{Amoroso}(x\given 0, \theta, \alpha, 3) \checked
\notag
\end{align}
The cube root of a gamma variable follows the Wilson-Hilferty distribution~\cite{Wilson1931}, which has been used to approximate a normal distribution if $\alpha$ is not too small.
\[
\opr{WilsonHilferty}(x \given \theta, \alpha) \approx \opr{Normal}(x \given 1-\sfrac{2}{9\alpha}, \sfrac{2}{9\alpha} )
\checked
\notag
\]
A related approximation using quartic roots of gamma variables~\cite{Hawkins1986} leads to $\opr{Amoroso}(x\given 0, \theta, \alpha, 4)$.
% ====================================================================
\SSec{Special cases: Negative integer \texorpdfstring{$\beta$}{beta}}
With negative $\beta$ we obtain various ``inverse'' distributions related to distributions with positive $\beta$ by the reciprocal transformation $ (\tfrac{x-a}{\theta} ) \to (\tfrac{\theta}{x-a} )$.
\dist{Inverse gamma} (Pearson type V, March, Vinci) distribution~\cite{Pearson1901, Johnson1994}:
\begin{align}
\label{InvGamma}
\opr{InvGamma}(x \given \theta, \alpha)
&= \frac{1}{\Gamma(\alpha) |\theta|} \Left(\frac{\theta}{x-a}\Right)^{\alpha+1}
\exp\Left\{-\Left( \frac{\theta}{x-a} \Right)\Right\} \checked
\\
&= \opr{Amoroso}(x\given a, \theta, \alpha, -1) \notag \checked
\end{align}
Occurs as the conjugate prior for an exponential distribution's scale parameter~\cite{Johnson1994}, or the prior for variance of a normal distribution with known mean~\cite{Gelman2004}. Frequently defined with zero scale parameter.
\dist{Inverse exponential} distribution~\cite{Kleiber2003}:
\begin{align}
\label{InvExp}
\opr{InvExp}(x \given a, \theta)
&= \frac{1}{|\theta|} \Left(\frac{\theta}{x-a }\Right)^2 \exp\Left\{-\Left( \frac{\theta}{x-a} \Right)\Right\} \checked \\
&= \opr{InvGamma}(x\given a, \theta, 1) \checked \notag \\
&= \opr{Amoroso}(x\given a, \theta, 1, -1) \checked \notag
\end{align}
Note that the name ``inverse exponential'' is occasionally used for the ordinary exponential distribution \eqref{Exp}.
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfAmorosoBetaNegPDF}
\end{center}
\caption[Inverse gamma and scaled inverse-chi distributions]{Inverse gamma and scaled inverse-chi distributions, $\opr{Amoroso}(x\given 0,1,2,\beta)$, negative $\beta$.}
\end{figure}
% ===============================
\dist{L\'{e}vy} distribution (van der Waals profile)~\cite{Feller1971}:
\begin{align}
\label{Levy}
\Levy(x \given a, c)
&= \sqrt{\frac{|c|}{2\pi}} \frac{1}{(x-a)^{3/2}} \exp\Left\{-\frac{c}{2(x-a)}\Right\} \checked
\\
%&= \opr{PearsonV}(x\given a,\tfrac{c}{2},\tfrac{1}{2}) \checked\notag \\
&= \opr{Amoroso}(x\given a, \tfrac{c}{2}, \tfrac{1}{2}, -1) \checked \notag
\end{align}
The L\'{e}vy distribution is notable for being stable\index{stable distributions}: a linear combination of identically distributed L\'{e}vy distributions is again a L\'{e}vy distribution. The other stable distributions with analytic forms are the normal distribution \eqref{Normal}, which is also a limit of the Amoroso distribution, and the Cauchy distribution \eqref{Cauchy}, which is not. L\'{e}vy distributions describe first passage times in one dimension~\cite{Feller1971}. See also the inverse Gaussian distribution \eqref{InvGaussian}, the first passage time distribution for Brownian diffusion with drift.
\index{first passage time}
\index{diffusion}
\dist{Scaled inverse chi-square} distribution~\cite{Gelman2004}:
\begin{align}
\label{ScaledInvChiSqr}
\opr{ScaledInvChiSqr}&(x \given \sigma, k)
\\ \notag =& \frac{2 \sigma^2}{\Gamma(\tfrac{k}{2}) } \Left(\frac{1}{2 \sigma^2x}\Right)^{\frac{k}{2}+1}
\exp\Left\{-\Left( \frac{1}{2 \sigma^2x} \Right)\Right\} \checked
\\
&\qquad \text{for positive integer } k \notag \\
&= \opr{InvGamma}(x\given 0, \tfrac{1}{2 \sigma^2}, \tfrac{k}{2}) \notag \checked \\
&= \opr{Stacy}(x\given \tfrac{1}{2 \sigma ^2},\tfrac{k}{2}, -1) \notag \checked \\
&= \opr{Amoroso}(x\given 0, \tfrac{1}{2 \sigma ^2}, \tfrac{k}{2}, -1) \checked \notag
\end{align}
A special case of the inverse gamma distribution with half-integer $\alpha$. Used as a prior for variance parameters in normal models~\cite{Gelman2004}.
\dist{Inverse chi-square} distribution~\cite{Gelman2004}:
%
\begin{align}
\label{InvChiSqr}
\opr{InvChiSqr}(x \given k)
=& \frac{2}{\Gamma(\tfrac{k}{2}) } \Left(\frac{1}{2x}\Right)^{\frac{k}{2}+1} \exp\Left\{-\Left( \frac{1}{2x} \Right)\Right\}
\checked \\
&\qquad \text{for positive integer } k \notag \\
& = \opr{ScaledInvChiSqr}(x\given 1,k)\notag \checked \\
&= \opr{InvGamma}(x\given 0, \tfrac{1}{2}, \tfrac{k}{2}) \notag \checked \\
&= \opr{Stacy}(x\given \tfrac{1}{2}, \tfrac{k}{2},-1) \notag \checked\\
&= \opr{Amoroso}(x\given 0, \tfrac{1}{2}, \tfrac{k}{2}, -1) \checked\notag
\end{align}
A standard scaled inverse chi-square distribution.
\dist{Scaled inverse chi} distribution~\cite{Lee2012}:
\begin{align}
\label{ScaledInvChi}
\opr{ScaledInvChi}&(x \given \sigma, k)
\\ \notag
&= \frac{2 \sqrt{2 \sigma ^2} }{ \Gamma(\tfrac{k}{2})} { \Left(\frac{1}{\sqrt{2 \sigma^2} x}\Right)}^{k+1} \exp\Left\{-\Left(\frac{1}{2 \sigma^2 x^2} \Right)\Right\} \checked
\\
&= \opr{Stacy}(x\given \tfrac{1}{\sqrt{2 \sigma^2}}, \tfrac{k}{2}, -2) \notag \checked \\
&= \opr{Amoroso}(x\given 0, \tfrac{1}{\sqrt{2 \sigma^2}}, \tfrac{k}{2}, -2) \notag \checked
\end{align}
Used as a prior for the standard deviation of a normal distribution.
\dist{Inverse chi} distribution~\cite{Lee2012}:
\begin{align}
\label{InvChi}
\opr{InvChi}(x \given k)
&= \frac{2\sqrt{2} }{ \Gamma(\tfrac{k}{2})} { \Left(\frac{1}{\sqrt{2} x}\Right)}^{k+1} \exp\Left\{-\Left(\frac{1}{2 x^2} \Right)\Right\}
\checked
\\
&= \opr{Stacy}(x\given \tfrac{1}{\sqrt{2}}, \tfrac{k}{2}, -2) \notag \checked \\
&= \opr{Amoroso}(x\given 0, \tfrac{1}{\sqrt{2}} , \tfrac{k}{2}, -2) \notag \checked
\end{align}
\dist{Inverse Rayleigh} distribution~\cite{Evans2000}:
\begin{align}
\label{InvRayleigh}
\opr{InvRayleigh}(x \given \sigma)
&= 2 \sqrt{2 \sigma ^2} \Left(\frac{1}{\sqrt{2 \sigma^2} x}\Right)^{3} \exp\Left\{-\Left(\frac{1}{2 \sigma^2 x^2} \Right)\Right\}
\checked
\\
&= \opr{Stacy}(x\given \tfrac{1}{\sqrt{2 \sigma^2}}, 1, -2) \notag \checked \\
& = \Frechet(x\given 0, \tfrac{1}{\sqrt{2 \sigma^2}}, 2)\notag \\
&= \opr{Amoroso}(x\given 0, \tfrac{1}{\sqrt{2 \sigma^2}}, 1, -2) \checked \notag
\end{align}
The inverse Rayleigh distribution has been used to model failure time~\cite{Voda1972}.
\dist{Inverse Maxwell} distribution~\cite{Shakil2010a}:
%
\begin{align}
\label{InvMaxwell}
\opr{InvMaxwell}(x \given \sigma)
&= \frac{\sqrt{2 \sigma ^2} }{ \sqrt{\pi}} { \Left(\frac{1}{\sqrt{2 \sigma^2} x}\Right)}^{4} \exp\Left\{-\Left(\frac{1}{2 \sigma^2 x^2} \Right)\Right\}
\checked
\\
&= \opr{ScaledInvChi}(x \given \sigma, 3) \checked \notag \\
&= \opr{Amoroso}(x\given 0, \tfrac{1}{\sqrt{2 \sigma^2}}, \tfrac{3}{2}, -2) \notag \checked
\end{align}
\dist{Inverse half-normal} distribution~\cite{Shakil2010a}:
%
\begin{align}
\label{InvHalfNormal}
\opr{InvHalfNormal}(x \given a, \sigma)
&= \frac{2}{\sqrt{2 \sigma ^2}} \frac{1}{(x-a)^2} \exp\Left\{-\Left(\frac{1}{2 \sigma^2 (x-a)^2} \Right)\Right\}
\checked
\\
&= \opr{Amoroso}(x\given a, \tfrac{1}{\sqrt{2 \sigma^2}}, \tfrac{1}{2}, -2) \notag \checked
\end{align}
\dist{Inverse Nakagami} distribution~\cite{Louzada2018a}:
\begin{align}
\label{InvNakagami}
\opr{InvNakagami}&(x \given a, \theta, \alpha)
\\ \notag
& =
\frac{2}{\Gamma(\alpha) |\theta| }
\Left(\frac{\theta}{x-a}\Right)^{2\alpha+1}
\exp \Left\{
- \Left(\frac{\theta}{x-a}\Right)^{2}
\Right\}
\\ \notag
& = \opr{Amoroso}(x\given a,\theta, \alpha, -2)
\notag
\end{align}
% ====================================================================
\SSec{Special cases: Extreme order statistics}
\label{SecExtremeOrderStatistic}
\index{extreme order statistics}
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfEVD}
\end{center}
\caption{Extreme value distributions of maxima.}
\end{figure}
\dist{Generalized Fisher-Tippett} distribution~\cite{Smirnov1949,Barndorff-Nielsen1963}:
\begin{align}
\label{GenFisherTippett}
\opr{GenFisherTippett}&(x\given a, \omega, n, \beta)
\notag
\\ \notag
&=
\frac{n^n}{\Gamma(n)}
\Left|\frac{\beta}{\omega}\Right|
\Left(\frac{x-a}{\omega}\Right)^{n \beta -1}
\exp \Left\{
- n \Left(\frac{x-a}{\omega}\Right)^{\beta}
\Right\} \checked
\\
& \quad \text{for positive integer } n
\\ \notag
& = \opr{Amoroso}(x\given a,{\omega}/{n^{\frac{1}{\beta} }},n,\beta) \checked
\end{align}
If we take $N$ samples from a probability distribution, then asymptotically for large $N$ and $n\ll N$, the distribution of the $n$th largest (or smallest) sample follows a generalized Fisher-Tippett distribution. The parameter $\beta$ depends on the tail behavior of the sampled distribution. Roughly speaking, if the tail is unbounded and decays exponentially then $\beta$ limits to $\infty$, if the tail scales as a power law then $\beta<0$, and if the tail is finite $\beta>0$~\cite{Gumbel1958}. In these three limits we obtain the Gumbel (\ref{Gumbel}, \ref{GenGumbel}), Fr\'{e}chet (\ref{Frechet}, \ref{GenFrechet}) and Weibull (\ref{Weibull},\ref{GenWeibull}) families of extreme value distribution (Extreme value distributions types I, II and III) respectively. If $\beta/\omega$ is negative we obtain distributions for the $n$th maxima, if positive then the $n$th minima.
% According to wikipedia, McFadden first wrote down unifying form of GEV.
\dist{Fisher-Tippett} (Generalized extreme value, GEV, von Mises-Jenkinson, von Mises extreme value, log-Gumbel, Brody) distribution~\cite{Fisher1928, Mises1936, Gumbel1958,Johnson1995,McFadden1978a}:
\begin{align}
\label{FisherTippett}
\opr{FisherTippett}&(x\given a , \omega, \beta)
\\ \notag
&=
\Left|\frac{\beta}{\omega}\Right|
\Left(\frac{x-a}{\omega}\Right)^{ \beta -1}
\exp \Left\{
- \Left(\frac{x-a}{\omega}\Right)^{\beta}
\Right\} \checked
\\ \notag & = \opr{GenFisherTippett}(x\given a, \omega, 1, \beta) \checked
\\ \notag & = \opr{Amoroso}(x\given a, \omega, 1, \beta) \checked
\end{align}
The asymptotic distribution of the extreme value from a large sample. The superclass of type I, II and III (Gumbel, Fr\'{e}chet, Weibull) extreme value distributions~\cite{Mises1936}. This is the {\bf max stable distribution} (distribution of maxima) with $\beta/\omega<0$ and the {\bf min stable distribution} (distribution of minima) for $\beta/\omega>0$.
The maximum of two Fisher-Tippett random variables (minimum if $\beta/\omega>0$) is again a Fisher-Tippett random variable.
\begin{align*}
\max\Big[ \opr{FisherTippett}(a,\omega_1,\beta), \opr{FisherTippett}(a, \omega_2,\beta) \Big]&\\ \sim
\opr{FisherTippett}(a, \frac{\omega_1 \omega_2}{(\omega_1^{\beta} + \omega_2^{\beta} )^{1/\beta}},\beta) \checked
\end{align*}
This follows since taking the maximum of two random variables is equivalent to multiplying their cumulative distribution functions, and the Fisher-Tippett cumulative distribution function is $\exp \Left\{
- \Left(\frac{x-a}{\omega}\Right)^{\beta}
\Right\}$.
\dist{Generalized Weibull} distribution~\cite{Smirnov1949,Barndorff-Nielsen1963}:
\begin{align}
\label{GenWeibull}
\opr{GenWeibull}&(x \given a , \omega, n, \beta)
\\ \notag &= \frac{n^n}{\Gamma(n)} \frac{ \beta}{| \omega |} \Left(\frac{x-a }{\omega}\Right)^{n \beta-1} \exp\Left\{-n \Left(\frac{x-a }{\omega}\Right)^{ \beta}\Right\}
\\ \notag &\quad \text{for } \beta>0
\\ \notag & = \opr{GenFisherTippett}(x\given a, \omega, n, \beta) \checked
\\ \notag
&= \opr{Amoroso}(x\given a , {\omega}/{n^{\frac{1}{\beta} }}, n, \beta) \checked
\end{align}
The limiting distribution of the $n$th smallest value of a large number of identically distributed random variables that are at least~$a$.
If $\omega$ is negative we obtain the distribution of the $n$th largest value.
\dist{Weibull}(Fisher-Tippett type III, Gumbel type III, Rosin-Rammler, Rosin-Rammler-Weibull, extreme value type III, Weibull-Gnedenko, stretched exponential) distribution \cite{Weibull1951,Johnson1995}:
\begin{align}
\label{Weibull}
\opr{Weibull}(x \given a ,\omega, \beta)
&= \frac{\beta}{| \omega |} \Left(\frac{x-a }{\omega}\Right)^{\beta-1} \exp\Left\{-\Left(\frac{x-a }{\omega}\Right)^{\beta}\Right\} \checked
\\ \notag &\quad \text{for } \beta>0
\\ \notag
& = \opr{FisherTippett}(x\given a, \omega, \beta) \checked
\\ \notag
&= \opr{Amoroso}(x\given a , \omega, 1, \beta) \checked
\end{align}
Weibull\footnote{Pronounced variously as \sl{vay-bull} or \sl{wye-bull}.} is the limiting distribution of the minimum of a large number of identically distributed random variables that are at least~$a$. If $\omega$ is negative we obtain a {\bf reversed Weibull} (extreme value type III) distribution for maxima.
Special cases of the Weibull distribution include the exponential ($\beta=1$) and Rayleigh ($\beta=2$) distributions.
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Reversed Weibull}
\dist{Generalized Fr\'{e}chet} distribution~\cite{Smirnov1949,Barndorff-Nielsen1963}:
\begin{align}
\label{GenFrechet}
\GenFrechet&(x \given a , \omega, n, \bar{\beta})
\\
\notag
&= \frac{n^n}{\Gamma(n)} \frac{\bar{\beta}}{| \omega |} \Left(\frac{x-a }{\omega}\Right)^{-n\bar{\beta}-1}
\exp\Left\{-n\Left(\frac{x-a }{\omega}\Right)^{-\bar{\beta}}\Right\}
\checked
\\ &\quad \text{for } \bar{\beta}>0 \notag
\\ \notag
& = \opr{GenFisherTippett}(x\given a, \omega, n, -\bar{\beta})
\checked
\\ \notag
&= \opr{Amoroso}(x\given a , {\omega}/{n^{\frac{1}{\beta} }},n,-\bar{\beta}),
\checked
\end{align}
The limiting distribution of the $n$th largest value of a large number of identically distributed random variables whose moments are not all finite (i.e. heavy tailed distributions). (If the shape parameter $\omega$ is negative then minimum rather than maxima.)
\dist{Fr\'{e}chet} (extreme value type II, Fisher-Tippett type II, Gumbel type II, inverse Weibull) distribution~\cite{Frechet1927,Gumbel1958}:
\begin{align}
\label{Frechet}
\Frechet(x \given a , \omega, \bar{\beta})
&= \frac{\bar{\beta}}{| \omega |} \Left(\frac{x-a }{\omega}\Right)^{-\bar{\beta}-1}
\exp\Left\{-\Left(\frac{x-a }{\omega}\Right)^{-\bar{\beta}}\Right\} \checked
\\ \notag &\quad \text{for } \bar{\beta}>0 \checked
\\ \notag
& = \opr{FisherTippett}(x\given a, \omega, -\bar{\beta}) \checked
\\ \notag
&= \opr{Amoroso}(x\given a , \omega,1,-\bar{\beta})\notag \checked
\end{align}
The limiting distribution of the maximum of a large number of identically distributed random variables whose moments are not all finite (i.e.\ heavy tailed distributions). (If the shape parameter $\omega$ is negative then minimum rather than maxima.)
Special cases of the Fr\'{e}chet distribution include the inverse exponential ($\bar{\beta}=1$) and inverse Rayleigh ($\bar{\beta}=2$) distributions.
\input{PropertiesTableAmoroso}
\SSec{Interrelations}
The Amoroso distribution is a limiting form of the generalized beta \eqref{GenBeta} and generalized beta prime \eqref{GenBetaPrime} distributions~\cite{McDonald1984}. Limits of the Amoroso distribution include gamma-exponential \eqref{GammaExp}, log-normal \eqref{LogNormal}, and normal \eqref{Normal}~\cite{Johnson1994} and power function \eqref{PowerFn} distributions.
\[
\opr{GammaExp}(x\given \nu, \lambda, \alpha) &= \lim_{\beta\rightarrow\infty} \opr{Amoroso}(x\given \nu+\beta \lambda,-\beta \lambda, \alpha,\beta)
\notag
\checked
\\
\opr{LogNormal}(x\given a,\vartheta,\sigma) & =
\lim_{\alpha\rightarrow\infty}
\opr{Amoroso}(x\given a, \vartheta \alpha^{-\sigma\sqrt{\alpha} } , \alpha, \tfrac{1}{\sigma \sqrt{\alpha}})
\checked
\notag
\\
\opr{Normal}(x\given \mu,\sigma) & =
\lim_{\alpha\rightarrow\infty} \opr{Amoroso}(x\given 0, \mu- \sigma\sqrt{\alpha}, \tfrac{\sigma}{\sqrt{\alpha}}, \alpha, 1)
\checked
\notag
\]
The log-normal limit is particularly subtle~\cite{Lawless1982}, \secref{sec:Limits}.
\begin{align*}
\lim_{\alpha\rightarrow\infty} &
\opr{Amoroso}(x\given a, \vartheta \alpha^{-\sigma\sqrt{\alpha} } , \alpha, \tfrac{1}{\sigma \sqrt{\alpha}}) \checked
\\
& \text{ \sl Ignore normalization constants and rearrange,}
\\
\propto & \Left(\tfrac{x-a}{\theta}\Right)^{-1} \exp\Left\{\alpha \ln (\tfrac{x-a}{\theta})^\beta - e^{\ln (\tfrac{x-a}{\theta})^\beta} \Right\}
\checked
\\
& \text{ \sl make the requisite substitutions,}
\\
\propto &
\Left(\tfrac{x-a}{\vartheta}\Right)^{-1} \exp\Left\{\alpha \sfrac{1}{\sigma\sqrt{\alpha}} \ln (\tfrac{x-a}{\vartheta}) - \alpha e^{\sfrac{1}{\sigma\sqrt{\alpha}} \ln (\sfrac{x-a}{\vartheta})} \Right\}
\checked
\\
& \text{ \sl expand second exponential to second order, }
\\
& \text{ \sl (once more ignoring normalization terms) }
\\
\propto &
\Left(\tfrac{x-a}{\vartheta}\Right)^{-1} \exp\Left\{- \tfrac{1}{2\sigma^2} \Left( \ln \tfrac{x-a}{\vartheta} \Right)^2 \Right\}
\checked
\\
& \text{ \sl and reconstitute the normalization constant.}
\\
= & \opr{LogNormal}(x\given a,\vartheta,\sigma)
\checked
\end{align*}