-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChExponential.tex
90 lines (70 loc) · 3.69 KB
/
ChExponential.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\Sec{Exponential Distribution}
\label{sec:Exp}
\dist{Exponential} (Pearson type X, waiting time, negative exponential, inverse exponential) distribution~\cite{Pearson1916,Kondo1930,Johnson1994}:
%
\begin{align}
\label{Exp}
\opr{Exp}(x \given a, \theta)
= & \frac{1}{|\theta|} \exp\Left\{-\frac{x-a}{\theta}\Right\} \checked
\\ \notag
& a,\ \theta, \text{ in } \mathbb{R} \checked
\\ \notag
\text{support } & x > a, \quad \theta>0 \checked
\\ \notag
& x < a, \quad \theta<0 \checked
\end{align}
An important property of the exponential distribution is that it is memoryless\index{memoryless}: assuming positive scale and zero location ($a=0,\ \theta>0$) the conditional probability given that $x>c$, where $c$ is a positive content, is again an exponential distribution with the same scale parameter. The only other distribution with this property is the geometric distribution\index{geometric distribution}, the discrete analog of the exponential distribution. The exponential is the maximum entropy distribution given the mean and semi-infinite support.
\input{PropertiesTableExp}
\SSec{Special cases}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Anchored exponential}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Standard exponential}
The exponential distribution is commonly defined with zero location and positive scale ({\bf anchored exponential}).
With $a=0$ and $\theta=1$ we obtain the {\bf standard exponential} distribution.
\begin{figure}[tb]
\begin{center}
\includegraphics[width=\textwidth]{pdfStdExp}
\end{center}
\caption[Standard exponential distribution]{Standard exponential distribution, $\opr{Exp}(x\given 0,1)$}
\end{figure}
\SSec{Interrelations}
The exponential distribution is common limit of many distributions.
\begin{align*}
\opr{Exp} (x\given a,\theta)
& = \opr{Amoroso}(x\given a ,\theta,1,1) \checked
\\& \qquad= \opr{Gamma}(x \given a , \theta, 1) \checked
\\ \opr{Exp} (x\given 0,\theta) & = \opr{Amoroso}(x\given 0 ,\theta,1,1) \checked
\\ & \qquad = \opr{Gamma}(x\given 0, \theta,1) \checked
\\
\opr{Exp}(x\given a,\theta) &= \lim_{\beta\rightarrow\infty} \opr{PowerFn} (x\given a-\beta\theta,\beta\theta,\beta)
\checked
\end{align*}
The sum of independent exponentials is an Erlang distribution, a special case of the gamma distribution~\eqref{Gamma}.
\[
\sum_{i=1}^{n} \opr{Exp}_i(0,\theta) \sim \opr{Gamma}(0, \theta, n) \checked
\notag
\]
The minima of a collection of exponentials, with positive scales $\theta_i>0$, is also exponential,
\[
\op{min}\bigl( \opr{Exp}_1(0,\theta_1),\ \opr{Exp}_2(0,\theta_2),\ \ldots\ ,\ \opr{Exp}_n(0,\theta_n) \bigr) \sim \opr{Exp}(0, \theta') \, , \checked
\notag
\]
where $\theta' = (\sum_{i=1}^{n} \tfrac{1}{\theta_i})^{-1}$. \checked
The order statistics \secref{OrderStatistic} of the exponential distribution are the beta-exponential distribution~\eqref{BetaExp}.
\begin{align*}
\opr{OrderStatistic}&_{\opr{Exp}(\pLoc,\pScale)} (x \given \alpha, \gamma) = \opr{BetaExp}(x\given \pLoc, \pScale, \alpha, \gamma) \checked
\notag
\end{align*}
A Weibull transform of the standard exponential distribution yields the Weibull distribution \eqref{Weibull}.
\[
\opr{Weibull}(a,\theta,\beta) \sim a+ \theta\ \oprr{StdExp}{Exp}()^{\tfrac{1}{\beta}} \checked
\notag
\]
The ratio of independent anchored exponential distributions is the exponential ratio distribution \eqref{ExpRatio}, a special case of the beta prime distribution \eqref{BetaPrime}.
\label{sec:ExpRatio}
\[
\opr{BetaPrime}(0,\tfrac{\theta_1}{\theta_2} , 1,1) \sim \opr{ExpRatio}(0,\tfrac{\theta_1}{\theta_2}) \sim \frac{\opr{Exp}_1(0,\theta_1)}{\opr{Exp}_2(0,\theta_2) }
\checked
\notag
\]