-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChGammaExp.tex
197 lines (156 loc) · 7.89 KB
/
ChGammaExp.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\Sec{Gamma-Exponential Distribution}
\label{sec:GammaExp}
\phantomsection
\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Gamma-exponential}
The {\bf gamma-exponential} (log-gamma, generalized Gompertz, generalized Gompertz-Verhulst type I, Coale-McNeil, exponential gamma) distribution \cite{Bartlett1946,Prentice1974,Johnson1995,Gonzalez2013} is a three parameter, continuous, univariate, unimodal probability density with infinite support. The functional form in the most straightforward parameterization is
\begin{align}
\label{GammaExp}
\opr{GammaExp}&(x\given \nu, \lambda, \alpha)
\\ \notag &=
\frac{1}{ \Gamma(\alpha) |\lambda|} \exp\Left\{- \alpha \Left(\frac{x-\nu}{\lambda}\Right) - \exp\Left(- \frac{x-\nu}{\lambda}\Right) \Right\} \checked
\\ \notag
& \qquad \text{for } x,\ \nu,\ \lambda,\ \alpha,\ \text{in } \mathbb{R},
\ \alpha>0, \
\\ \notag
& \qquad \text{support } -\infty \leq x \leq \infty
\notag
\end{align}
The three real parameters consist of a location parameter $\nu$, a scale parameter~$\lambda$, and a shape parameter $\alpha$.
Note that this distribution is often called the ``log-gamma'' distribution. This naming convention is the opposite of that used for the log-normal distribution \eqref{LogNormal}. The name ``log-gamma'' has also been used for the anti-log transform of the generalized gamma distribution, which leads to the unit-gamma distribution~\eqref{UnitGamma}.%~\cite{Gupta2004}.
%NOTE: v0.6 flipped sign of scale to make anti-log transform to gamma consistent.
Also note that the gamma-exponential is often defined with the sign of the scale $\lambda$ flipped. The parameterization used here is consistent with other log-transformed distributions. (See Log and anti-log transformation, p.\pageref{logtransform})
\SSec{Special cases}
\dist{Standard gamma-exponential} distribution:
\begin{align}
\label{StdGammaExp}
\opr{StdGammaExp}(x\given \alpha)
=&
\frac{1}{\Gamma(\alpha) } \exp\Left\{- \alpha\, x - \exp (-x) \Right\} \checked
\\ \notag =& \opr{GammaExp}(x\given 0,1,\alpha) \checked
\end{align}
The gamma-exponential distribution with zero location and unit scale.
\dist{Chi-square-exponential} (log-chi-square) distribution~\cite{Lee2012}:
\begin{align}
\label{ChiSqrExp}
\opr{ChiSqrExp}(x\given k)
&= \notag
\frac{1}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})} \exp\Left\{- \frac{k}{2} x - \frac{1}{2} \exp(-x) \Right\} \checked
\\ & \qquad \text{ for positive integer } k
\\
&= \opr{GammaExp}(x\given \ln 2, 1 ,\tfrac{k}{2}) \checked
\notag
\end{align}
The log transform of the chi-square distribution~\eqref{ChiSqr}.
\dist{Generalized Gumbel} distribution~\cite{Gumbel1958,Johnson1995}:
\begin{align}
\label{GenGumbel}
&\opr{GenGumbel}(x\given u,{\lambda},n)
\\ \notag &= \notag
\frac{n^n}{\Gamma(n) |{\lambda}|} \exp\Left\{ - n \Left(\frac{x-u}{{\lambda}}\Right) - n \exp\Left(- \frac{x-u}{{\lambda}}\Right) \Right\} \checked
\\ & \qquad \text{ for positive integer } n
\notag
\\
&= \opr{GammaExp}(x\given u+{\lambda} \ln n,{\lambda},n) \checked
\notag
\end{align}
The limiting distribution of the $n$th largest value of a large number of unbounded identically distributed random variables whose probability distribution has an exponentially decaying tail.
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfGammaExp}
\end{center}
\caption[Gamma exponential distributions]{Gamma exponential distributions, $\opr{GammaExp}(x\given 0,1,\alpha)$}
\end{figure}
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfGumbel}
\end{center}
\caption[Gumbel distribution]{Standard Gumbel distribution, $\opr{StdGumbel}(x)$}
\end{figure}
\begin{table}[tp]
\caption[Gamma-exponential distribution -- Special cases]{Special cases of the gamma-exponential family}
\begin{center}
{\renewcommand{\arraystretch}{1.25}
\begin{tabular}{llcccl}
\eqref{GammaExp} &gamma-exponential & $\nu$ & $\lambda$ & $\alpha$
\\ \hline
\eqref{StdGammaExp} & standard gamma-exponential & $0$ & $1$ & $\alpha$ \\
\eqref{ChiSqrExp} & chi-square-exponential &$\ln 2 $ & $1$ & $\tfrac{k}{2}$ \\
\eqref{GenGumbel} &generalized Gumbel & . & . & $n$ & \\
\eqref{Gumbel} &Gumbel & . & . & 1 & \\
\eqref{StdGumbel} &standard Gumbel & 0 & 1 & 1 & \\
\eqref{BHP} &BHP & . & . & $\frac{\pi}{2}$ & \\
\eqref{Moyal} & Moyal & . & . & \half
\end{tabular}
}
\end{center}
\end{table}
\input{PropertiesTableGammaExp}
\dist{Gumbel} (Fisher-Tippett type I, Fisher-Tippett-Gumbel, Gumbel-Fisher-Tippett, FTG, log-Weibull, extreme value (type I), doubly exponential, double exponential) distribution~\cite{Fisher1928,Gumbel1958, Johnson1995}:
\begin{align}
\label{Gumbel}
\opr{Gumbel}(x\given u,{\lambda})
&=
\frac{1}{|{\lambda}|} \exp\Left\{ -\Left(\frac{x-u}{{\lambda}}\Right) - \exp\Left(-\frac{x-u}{{\lambda}}\Right) \Right\} \checked
\\
&= \opr{GammaExp}(x\given u,{\lambda},1) \checked
\notag
\end{align}
This is the asymptotic extreme value distribution for variables of ``exponential type'', unbounded with finite moments~\cite{Gumbel1958}.
With positive scale ${\lambda}>0$, this is an extreme value distribution of the maximum, with negative scale ${\lambda}<0$ an extreme value distribution of the minimum. Note that the Gumbel is sometimes defined with the negative of the scale used here.
% Mathematica uses negative scale. Wikipedia uses this scale.
The term ``double exponential distribution'' can refer to either Laplace or Gumbel distributions~\cite{Johnson1995}.
\dist{Standard Gumbel} (Gumbel) distribution~\cite{Gumbel1958}:
\begin{align}
\label{StdGumbel}
\opr{StdGumbel}(x)
=&
\exp\Left\{- x - e^{-x} \Right\} \checked \\
=& \opr{GammaExp}(x\given 0,1,1) \notag \checked
\end{align}
The Gumbel distribution with zero location and a unit scale.
\dist{BHP} (Bramwell-Holdsworth-Pinton) distribution~\cite{Bramwell1998, Bramwell2000}:
\begin{align}
\label{BHP}
\opr{BHP}(x\given \nu,\lambda)
&=
\frac{1}{\Gamma(\tfrac{\pi}{2}) |\lambda|} \exp\Left\{ - \frac{\pi}{2}\Left(\frac{x-\nu}{\lambda}\Right) - \exp\Left(-\frac{x-\nu}{\lambda}\Right) \Right\} \checked
\notag
\\
&= \opr{GammaExp}(x\given \nu,\lambda,\frac{\pi}{2}) \checked
\end{align}
Proposed as a model of rare fluctuations in turbulence and other correlated systems.
% v0.6 flipped sign on lambda.
\dist{Moyal} distribution~\cite{Moyal1955}:
\begin{align}
\label{Moyal}
\opr{Moyal}(x\given \mu, \lambda) & =
\frac{1}{\sqrt{2\pi} |\lambda|} \exp\Left\{- \half \Left(\frac{x-\mu}{\lambda}\Right) - \half \exp\Left(- \frac{x-\mu}{\lambda}\Right) \Right\} \checked
\\
&= \opr{GammaExp}(x\given \mu+ \lambda \ln 2, \lambda ,\half) \checked
\notag
\end{align}
Introduced as analytic approximation to the Landau distribution \eqref{Landau} \cite{Moyal1955}.
\SSec{Interrelations}
The name ``log-gamma'' arises because the standard log-gamma distribution is the logarithmic transform of the standard gamma distribution
\begin{align*}
\opr{StdGammaExp}(\alpha) &\sim - \ln\Bigl( \opr{StdGamma}(\alpha) \Bigr) \checked
\\
\opr{GammaExp}(\nu, \lambda, \alpha) &\sim -\ln\Bigl( \opr{Amoroso}(0, e^{-\nu},\alpha, \tfrac{1}{\lambda}) \Bigr) \checked
\end{align*}
The difference of two gamma-exponential distribution (with common scale) is a beta-logistic distribution \eqref{BetaLogistic}~\cite{Johnson1995}. % eq 22.212
\[
\opr{BetaLogistic}(x\given \pLoc_1-\pLoc_2,\pScale,\alpha,\gamma)
& \sim \opr{GammaExp}_1(x\given \pLoc_1,\pScale,\alpha) \notag \\ & \qquad -\opr{GammaExp}_2(x\given \pLoc_2,\pScale,\gamma)
\checked
\notag
\]
It follows that the difference of two Gumbel distributions \eqref{Gumbel} is a logistic distribution \eqref{Logistic}.
The gamma-exponential distribution is a limit of the Amoroso distribution \eqref{Amoroso}, and itself contains the normal \eqref{Normal} distribution as a limiting case.
\[
\lim_{\alpha\rightarrow\infty} \opr{GammaExp}(x\given \mu+\sigma\sqrt{\alpha}\ln\alpha, \sigma\sqrt{\alpha},\alpha)
= \opr{Normal}(x\given \mu, \sigma)
\checked
\notag
\]