-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChGenBetaPrime.tex
251 lines (199 loc) · 11.4 KB
/
ChGenBetaPrime.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\Sec[Gen. Beta Prime Distribution] {Generalized Beta Prime Distribution}
\label{sec:GenBetaPrime}
\phantomsection
\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Generalized beta prime}
The {\bf generalized beta-prime} (Feller-Pareto, beta-log-logistic, generalized\linebreak gamma ratio, Majumder-Chakravart, generalized beta type II, generalized Feller-Pareto) distribution~\cite{Feller1971, McDonald1984, Tahmasebi2010} is a five parameter, continuous, univariate, unimodal probability density, with semi-infinite support. The functional form in the most straightforward parameterization is
\begin{align}
\label{GenBetaPrime}
\opr{GenBetaPrime}&(x\given a, s, \alpha,\gamma,\beta) \\
& =
\frac{1}{B(\alpha, \gamma)} \Left|\frac{\beta}{s}\Right|
\Left(\frac{x-a}{s}\Right)^{\alpha\beta -1} \Left(1+ \Left(\frac{x-a}{s}\Right)^\beta \Right)^{-\alpha-\gamma }
\notag
\checked
\\ & \quad a,\ s,\ \alpha,\ \gamma,\ \beta \text{ in } \mathbb{R},\quad \alpha,\ \gamma >0
\notag
\end{align}
The five real parameters of the generalized beta prime distribution consist of a location parameter~$a$,
scale parameter~$s$, two shape parameters,~$\alpha$ and~$\gamma$, and the Weibull power parameter $\beta$. The shape parameters, $\alpha$ and $\gamma$, are positive.
The generalized beta prime arises as the Weibull transform of the standard beta prime distribution \eqref{StdBetaPrime}, and as order statistics of the log-logistic distribution. The Amoroso distribution is a limiting form, and a variety of other distributions occur as special cases. (See Table~\ref{GenBetaPrimeTable}). These distributions are most often encountered as parametric models for survival statistics developed by economists and actuaries.
\SSec{Special cases}
\dist {Transformed beta} distribution~\cite{McDonald1984,Klugman2012}:
\begin{align}
\label{TransformedBeta}
\opr{TransformedBeta}&(x\given s, \alpha,\gamma,\beta)
\\ \notag & =
\frac{1}{B(\alpha, \gamma)} \Left|\frac{\beta}{s}\Right|
\Left(\frac{x}{s}\Right)^{\alpha\beta -1} \Left(1+ \Left(\frac{x}{s}\Right)^\beta \Right)^{-\alpha-\gamma }
\checked
\\ \notag &= \opr{GenBetaPrime}(x\given 0, s, \alpha,\gamma,\beta)
\checked
\end{align}
A generalized beta prime distribution without a location parameter, $a=0$.
\dist{Burr} (Burr type XII, Pareto type IV, beta-P, Singh-Maddala, generalized log-logistic, exponential-gamma,Weibull-gamma)
%q-exponential\sscite{Nadarajah2006}) %This dosn't compute.
distribution~\cite{Burr1942,Tadikamalla1980, Kleiber2003}:
\begin{align}
\label{Burr}
\opr{Burr}(x\given a, s, \gamma,\beta)
&=
\frac{\beta \gamma}{|s|} \Left(\frac{x-a}{s}\Right)^{\beta-1} \Left(1+\Left(\frac{x-a}{s}\Right)^\beta\Right)^{-\gamma-1}
\checked
\\ & = \opr{GenBetaPrime}(x\given a, s, 1,\gamma,\beta) \notag \checked
\end{align}
Most commonly encountered as a model of income distribution.
\begin{table*}[tp]
%\addcontentsline{toc}{subsection}{Beta prime}
\begin{center}
\caption[Generalized beta prime distribution -- Special cases]{Special cases of generalized beta prime}
\label{GenBetaPrimeTable}
~\\
{\renewcommand{\arraystretch}{1.25}
\begin{tabular}{llccccc}
\eqref{GenBetaPrime} & generalized beta prime & $a$ & $s$ & $\alpha$ & $\gamma$ & ${\beta}$ \\
\hline
\eqref{Burr} & Burr & . & . & 1 & . & . \\
\eqref{Dagum} & Dagum & . & . & . & 1 & . \\
\eqref{Paralogistic} & paralogistic & . & . & 1 & $\beta$ & . \\
\eqref{InvParalogistic} & inverse paralogistic & . & . & $\beta$& 1 & . \\
\eqref{LogLogistic} & log-logistic & . & . & 1 & 1 & . \\
\eqref{GenBetaPrime} & transformed beta & 0 & . & . & . & . \\
\eqref{HalfGenPearsonVII} & half gen. Pearson VII & . & . & $\tfrac{1}{\beta}$ & $m$-$\tfrac{1}{\beta}$ & . \\
\eqref{BetaPrime} & beta prime & . & . & . & . & 1 \\
\eqref{Lomax} & Lomax & . & . & 1 & . & 1 \\
\eqref{InvLomax} & inverse Lomax & . & . & . & 1 & 1 \\
\eqref{StdBetaPrime} & std.~beta-prime & 0 & 1 & . & . & 1 \\
\eqref{F} & F & 0 & $\tfrac{k_2}{k_1}$ & $\tfrac{k_1}{2}$ & $\tfrac{k_2}{2}$ & 1 \\
\eqref{UniPrime} & uniform-prime & . & . & 1 & 1 & 1 \\
\eqref{ExpRatio} & exponential ratio & 0 & . & 1 & 1 & 1 \\
\eqref{HalfPearsonVII} & half-Pearson VII & . & . & $\tfrac{1}{2}$ & . & 2 \\
\eqref{HalfCauchy} & half-Cauchy & . & . & $\tfrac{1}{2}$ & $\tfrac{1}{2}$ & 2 \\
\end{tabular}
}
\end{center}
\end{table*}
\input{PropertiesTableGenBetaPrime}
\pagebreak
\dist{Dagum} (Inverse Burr, Burr type III, Dagum type I, beta-kappa, beta-k, Mielke) distribution~\cite{Burr1942, Dagum1977, Tadikamalla1980}:
\begin{align}
\label{Dagum}
\opr{Dagum}(x \given a, s, \gamma, \beta)
%&= \gamma \beta \frac{x^{\gamma\beta-1}}{ (1+x^\beta)^{\gamma +1} } \\
&= \frac{\beta \gamma}{|s|} \Left(\frac{x-a}{s}\Right)^{\gamma \beta-1} \Left(1+\Left(\frac{x-a}{s}\Right)^\beta\Right)^{-\gamma-1}
\checked
%\\ \notag &= \opr{Burr}(x\given a,s, \gamma,-\beta) \checked % Burr restricted to positive beta
\\ \notag &= \opr{GenBetaPrime}(x\given a, s, 1, \gamma,-\beta) \checked
\\ \notag &= \opr{GenBetaPrime}(x\given a, s, \gamma,1,+\beta) \checked
\end{align}
\dist{Paralogistic} distribution~\cite{Kleiber2003}:
\begin{align}
\label{Paralogistic}
\opr{Paralogistic}(x\given a, s, \beta) &= \frac{\beta^2}{|s|} \frac{ \Left(\frac{x-a}{s}\Right)^{\beta-1}}{ (1+ \Left(\frac{x-a}{s}\Right)^\beta)^{\beta+1} } \checked
\\ \notag &= \opr{GenBetaPrime}(x\given a, s, 1,\beta,\beta)
\checked
\end{align}
\dist{Inverse paralogistic} distribution~\cite{Klugman2012}:
\begin{align}
\label{InvParalogistic}
\opr{InvParalogistic}(x\given a,s,\beta) &= \frac{\beta^2}{|s|} \frac{ \Left(\frac{x-a}{s}\Right)^{\beta^2-1}}{ (1+ \Left(\frac{x-a}{s}\Right)^\beta)^{\beta+1} } \checked
\\ \notag &= \opr{GenBetaPrime}(x\given a, s, \beta,1,\beta) \checked
\end{align}
\dist{Log-logistic} (Fisk, Weibull-exponential, Pareto type III, power prime) distribution~\cite{Shah1963, Johnson1995, McDonald1995}:
\begin{align}
\label{LogLogistic}
\opr{LogLogistic}(x\given a,s,\beta) &=\Left|\frac{\beta}{s}\Right| \frac{\Left(\frac{x-a}{s}\Right)^{\beta-1}}{ \Left(1+\Left(\frac{x-a}{s}\Right)^{\beta}\Right)^{2} } \checked
\\ \notag &= \opr{Burr}(x\given a, s, 1,\beta) \checked
\\ \notag &= \opr{GenBetaPrime}(x\given a, s, 1,1,\beta) \checked
\end{align}
Used as a parametric model for survival analysis and, in economics, as a model for the distribution of wealth or income.
The logistic and log-logistic distributions are related by an exponential transform.
\[
\opr{LogLogistic}(0,s,\beta) &\sim \exp\bigl(-\opr{Logistic}(-\ln s,\sfrac{1}{\beta})\bigr)
\checked
\notag
\]
\begin{figure}[t]
\begin{center}
\includegraphics[width=\textwidth]{pdfLogLogistic}
\end{center}
\caption[Log-logistic distributions]{Log-logistic distributions, $\opr{LogLogistic}(x\given 0,1,\beta)$.}
\end{figure}
\dist{Half-Pearson VII} (half-t) distribution~\cite{Gelman2006}:
\begin{align}
\label{HalfPearsonVII}
\opr{HalfPearsonVII}&(x\given a, s, m) \\
\notag &=
\frac{1}{B(\tfrac{1}{2},m-\tfrac{1}{2})} \frac{2}{|s|}
\Left(1+ \Left(\frac{x-a}{s}\Right)^2 \Right)^{-m} \checked
\\ \notag & = \opr{GenBetaPrime}(x\given a, s, \tfrac{1}{2},m-\tfrac{1}{2}, 2) \checked
\end{align}
The Pearson type VII \eqref{PearsonVII} distribution truncated at the center of symmetry. Investigated as a prior for variance parameters in hierarchal models~\cite{Gelman2006}.
\dist{Half-Cauchy} distribution~\cite{Gelman2006}:
\begin{align}
\label{HalfCauchy}
\opr{HalfCauchy}(x\given a, s) &=
\frac{2}{\pi |s|}
\Left(1+ \Left(\frac{x-a}{s}\Right)^2 \Right)^{-1}
\checked
\\ \notag & = \opr{HalfPearsonVII}(x\given a, s, 1) \checked
\\ \notag & = \opr{GenBetaPrime}(x\given a, s, \tfrac{1}{2},\tfrac{1}{2}, 2)
\checked
\end{align}
A notable subclass of the Half-Pearson type VII, the Cauchy distribution \eqref{Cauchy} truncated at the center of symmetry.
\dist{Half generalized Pearson VII} distribution~\cite{\self}:
\begin{align}
\label{HalfGenPearsonVII}
\opr{HalfGenPearsonVII}&(x\given a,s, m,\beta)
\\ \notag = & \frac{\beta}{ |s| B(m-\frac{1}{\beta}, \frac{1}{\beta} )} \Left( 1 +\Left( \frac{x-a}{s}\Right)^{\beta} \Right)^{-m}
\checked
\\ \notag & = \opr{GenBetaPrime}(x\given a, s, \tfrac{1}{\beta},m-\tfrac{1}{\beta}, \beta)
\checked
%\\ \notag & x, a,s, m,\beta \text{ in } {\mathbb R} \\
%& \tfrac{x-a}{s}>0,\ \beta>0,\ m>0,\ \beta m >1
%\notag
\end{align}
One half of a Generalized Pearson VII distribution~\eqref{GenPearsonVII}.
Special cases include half Pearson VII \eqref{HalfPearsonVII}, half Cauchy \eqref{HalfCauchy}, {\bf half-Laha} (See \eqref{Laha}), and uniform prime \eqref{UniPrime} distributions.
\begin{align*}
\opr{HalfGenPearsonVII}(x\given a,s, m,2) &= \opr{HalfPearsonVII}(x\given a,s,m) \checked \\
\opr{HalfGenPearsonVII}(x\given a,s, 1,2) &= \opr{HalfCauchy}(x\given a,s) \checked \\
\opr{HalfGenPearsonVII}(x\given a,s, 1,4) &= \oprr{HalfLaha}{Laha}(x\given a,s) \checked \\
\opr{HalfGenPearsonVII}(x\given a,s, 2,1) &= \opr{UniPrime}(x\given a,s) \checked
\end{align*}
The half exponential power \eqref{HalfExpPower} distribution occurs in the large $m$ limit.
\begin{align*}
\lim_{m\rightarrow\infty} \opr{HalfGenPearsonVII}&(x\given a,\theta m^{\sfrac{1}{\beta}}, m,\beta)
= \opr{HalfExpPower}(x\given a,\theta,\beta) \checked
\end{align*}
\phantomsection
\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Half-Laha}
% ====================================================================
\SSec{Interrelations}
Negating the Weibull parameter of the generalized beta prime distribution is equivalent to exchanging the shape parameters $\alpha$ and $\gamma$.
\begin{align*}
\opr{GenBetaPrime}&(x\given a, s, \alpha,\gamma,\beta) = \opr{GenBetaPrime}(x\given a, s,\gamma, \alpha,-\beta) \checked
\end{align*}
The distribution is related to ratios of gamma distributions.
\[
\opr{GenBetaPrime}(a,s,\alpha,\gamma,\beta) \sim a+ s\Left( \frac{\opr{StdGamma}_1(\alpha)}{\opr{StdGamma}_2(\gamma) } \Right)^{\tfrac{1}{\beta}} \checked
\notag
\]
Limit of the generalized beta prime distribution include the Amoroso \eqref{Amoroso}~\cite{McDonald1984} and beta-logistic \eqref{BetaLogistic} distributions.
\begin{align*}
\lim_{\gamma\rightarrow\infty} \opr{GenBetaPrime}(x\given a, \theta \gamma^{\frac{1}{\beta}} ,\alpha, \gamma, \beta )
%\\
& = \opr{Amoroso}(x\given a,\theta,\alpha, \beta) \checked \\
\lim_{\beta\rightarrow\infty} \opr{GenBetaPrime}(x\given \pLoc+\beta\pScale, -\beta \pScale, \alpha, \gamma, \beta)
%\\
& = \opr{BetaLogistic}(x\given \pLoc,\pScale, \gamma, \alpha) \checked
\end{align*}
Therefore, the generalized beta prime also indirectly limits to the normal \eqref{Normal}, log-normal \eqref{LogNormal}, gamma-exponential \eqref{GammaExp}, Laplace \eqref{Laplace} and power-function \eqref{PowerFn} distributions, among others.
Generalized beta prime describes the order statistics \secref{OrderStatistic} of the log-logistic distribution \eqref{LogLogistic}).
\begin{align*}
\opr{OrderStatistic}_{\opr{LogLogistic}(a,s,\beta)}(x \given \gamma, \alpha ) & = \opr{GenBetaPrime}(x\given a, s, \alpha, \gamma, \beta) \checked
\end{align*}
Despite occasional claims to the contrary,
the log-Cauchy distribution is not a special case of the generalized beta prime distribution (generalized beta prime is mono-modal, log-Cauchy is not).
% =================================================================================