-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChMisc.tex
456 lines (371 loc) · 20.1 KB
/
ChMisc.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\subpart{Miscellanea}
% ====================================================================
\Sec{Miscellaneous Distributions}
In this section we detail various related distributions that do not fall into the previously discussed families; either because they are not continuous, not univariate, not unimodal, or simply not simple. The notation is less uniform in this section and we do not provide detailed properties for each distribution, but instead list a few pertinent citations.
%===========================================================================
\dist{Bates} distribution~\cite{Bates1955, Johnson1995}:
\begin{align}
\label{Bates}
\opr{Bates}(n)&\sim \frac{1}{n}\sum_{i=1}^{n} \opr{Uniform}_i(0,1) \checked \\
\notag&\sim\frac{1}{n}\opr{IrwinHall}(n) \checked
\end{align}
The mean of $n$ independent standard uniform variates.
%-----------------------------------------------------------------------------
\secbreak
\dist{Beta-Fisher-Tippett} (generalized beta-exponential, exponentiated Weibull) distribution~\cite{\self}:
\begin{align}
\label{BetaFisherTippett}
&\opr{BetaFisherTippett}(x\given \pLoc,\pScale,\alpha, \gamma,\beta)
\\ \notag
& =
\frac{1}{B(\alpha, \gamma)} \Left|\frac{\beta}{\pScale}\Right| \Left(\frac{x-\pLoc}{\pScale}\Right)^{\beta-1}
e^{-\alpha (\frac{x-\pLoc}{\pScale})^{\beta} } \Left(1 - e^{-(\frac{x-\pLoc}{\pScale})^\beta }\Right)^{\gamma-1}
\checked
\\ \notag
& \text{for } x,\ \pLoc,\ \pScale,\ \alpha,\ \gamma,\ \beta \text{ in } \mathbb{R},
\\ \notag & \alpha,\ \gamma >0,\quad \tfrac{x-\pLoc}{\pScale} >0
\end{align}
A five parameter, continuous, univariate probability density, with semi-infinite support.
The Beta-Fisher-Tippett occurs as the weibullization of the beta-exponential distribution \eqref{BetaExp}, and as the order statistics of the Fisher-Tippett distribution \eqref{FisherTippett}.
\begin{align*}
\opr{OrderStatistic}_{\opr{FisherTippett}(a,s,\beta)} & (x \given \alpha, \gamma)
\\
&= \opr{BetaFisherTippett}(x\given a, s, \alpha,\gamma, \beta) \checked
\end{align*}
The order statistics of the Weibull \eqref{Weibull} and Fr\'{e}chet \eqref{Frechet} distributions are therefore also Beta-Fisher-Tippett.
With $\beta=1$ we recover the beta-exponential distribution~\eqref{BetaExp}. Other special cases include the {\bf inverse beta-exponential}, $\beta=-1$~\cite{\self} (The order statistics of the inverse exponential distribution, \eqref{InvExp}), and the {\bf exponentiated Weibull} distribution, $\alpha=1$~\cite{Zacks1984,Mudholkar1995}.
%===========================================================================
\secbreak
\dist{Birnbaum-Saunders} (fatigue life distribution) distribution~\cite{Birnbaum1969,Johnson1995}:
\begin{align}
\label{BirnbaumSaunders}
&\opr{BirnbaumSaunders} (x\given a,s,\gamma) \\
&= \frac{1}{2\gamma \sqrt{2 \pi s^2 } } \frac{s}{x-a} (\sqrt{\frac{x-a}{s}} +\sqrt{\frac{s}{x-a}} ) \exp\Left\{ \frac{(\sqrt{\frac{x-a}{s}} -\sqrt{\frac{s}{x-a}} ) ^2}{2\gamma^2} \Right\} \checked
\notag \\ \notag
\notag
\end{align}
Models physical fatigue failure due to crack growth.
%===========================================================================
\secbreak
\dist{Exponential power} (Box-Tiao, generalized normal, generalized error, Subbotin) distribution~\cite{Box1962,Nadarajah2005}:
\begin{align}
\label{ExpPower}
\opr{ExpPower}(x\given \pLoc,\theta,\beta) = \frac{\beta}{2 |\theta| \Gamma(\tfrac{1}{\beta})}
e^{-\Left|\frac{x-\pLoc}{\theta} \Right|^\beta} \checked
\end{align}
A generalization of the normal distribution. Special cases include the normal, Laplace and uniform distributions.
\begin{align*}
\opr{ExpPower}(x\given \pLoc,\theta,1) &= \opr{Laplace}(x\given \pLoc,\theta) \checked \\
\opr{ExpPower}(x\given \pLoc,\theta,2) &= \opr{Normal} (x\given \pLoc, \theta/\sqrt{2}) \checked \\
\lim_{\beta\rightarrow\infty}\opr{ExpPower}(x\given \pLoc,\theta,\beta) &= \opr{Uniform}(x\given \pLoc-\theta, 2\theta) \checked
\end{align*}
%-----------------------------------------------------------------------------
\secbreak
\dist{Generalized K} distribution~\cite{Malik1968}:
\begin{align}
\label{GenK}
\opr{GenK}(x\given s, \alpha_1, \alpha_2,\beta) &=
\frac{2 |\beta| }{|s| \Gamma(\alpha_1)\Gamma(\alpha_2)}
\Bigl( \frac{x}{s} \Bigr)^{\half(\alpha_1+\alpha_2 )\beta -1} K_{\alpha_1-\alpha_2} \Bigl(2 \bigl(\frac{x}{s}\bigr)^{\sfrac{\beta}{2} } \Bigr)
\checked
\\
& x\geq 0, \alpha_1>0, \alpha_2>0 \notag
\end{align}
The Weibull transform of the K-distribution \eqref{K}. Arises as the product of anchored Amoroso distributions with common Weibull parameters.
\begin{align*}
\opr{GenK}(s_1 s_2, \alpha_1, \alpha_2,\beta) & \sim \opr{Amoroso}_1(0, s_1,\alpha_1, \beta)
\opr{Amoroso}_2 (0,s_2,\alpha_2, \beta) \checked
\\
& \sim s_1 \opr{Gamma}_1(0,\alpha_1)^{\sfrac{1}{\beta}} \ s_2 \opr{Gamma}_2(0,\alpha_2)^{\sfrac{1}{\beta}} \checked
\\ & \sim s_1 s_2 \bigl( \opr{Gamma}_1(1,\alpha_1) \opr{Gamma}_2(1,\alpha_2) \bigr)^{\sfrac{1}{\beta}} \checked
\\ & \sim s_1 s_2 \opr{K}(1,\alpha_1,\alpha_2)^{\sfrac{1}{\beta}} \checked
\end{align*}
\secbreak
%-----------------------------------------------------------------------------
\dist{Generalized Pearson VII} (generalized Cauchy, generalized-t) distribution\linebreak\cite{Rider1957,Miller1972,McDonald1988,McDonald1991,Nadarajah2003,Aysal2007}:
\begin{align}
\label{GenPearsonVII}
\opr{GenPearsonVII}&(x\given a,s, m,\beta)
\\= & \frac{\beta}{2 |s| B(m-\frac{1}{\beta}, \frac{1}{\beta} )} \Left( 1 +\Left| \frac{x-a}{s}\Right|^{\beta} \Right)^{-m} \checked
\notag \\
\notag & x, a,s, m,\beta \text{ in } {\mathbb R} \\
& \beta>0,\ m>0,\ \beta m >1
\notag
\end{align}
A generalization of the Pearson type VII distribution \eqref{PearsonVII}. Special cases include Pearson VII \eqref{PearsonVII}, Cauchy \eqref{Cauchy}, Laha \eqref{Laha}, Meridian \eqref{Meridian} and exponential power \eqref{ExpPower} distributions,
\begin{align*}
\opr{GenPearsonVII}(x\given a,s, m,2) &= \opr{PearsonVII}(x\given a,s,m) \checked \\
\opr{GenPearsonVII}(x\given a,s, 1,2) &= \opr{Cauchy}(x\given a,s) \checked \\
\opr{GenPearsonVII}(x\given a,s, 1,4) &= \opr{Laha}(x\given a,s) \checked \\
\opr{GenPearsonVII}(x\given a,s, 2,1) &= \opr{Meridian}(x\given a,s) \checked \\
\lim_{m\rightarrow\infty} \opr{GenPearsonVII}(x\given a,m^{1/\beta}\theta, m,\beta) & = \opr{ExpPower}(x\given a,\theta,\beta)
\checked
\end{align*}
A related distribution is the { half generalized Pearson VII} \eqref{HalfGenPearsonVII}, a special case of generalized beta prime
\eqref{GenBetaPrime}.
\secbreak
%===========================================================================
\dist{Holtsmark} distribution~\cite{Holtsmark1919}:
\begin{align}
\label{Holtsmark}
\opr{Holtsmark}(x\given \mu,c) = \opr{Stable}(x\given \mu,c,\sfrac{3}{2},0) \checked
\end{align}
A symmetric stable distribution \eqref{Stable}.
Although the Holtsmark distribution cannot be expressed with elementary functions, it does have an analytic form in terms of hypergeometric functions~\cite{Garoni2002}.
\begin{align*}
\opr{Holtsmark}(x\given \mu,c)
=& \sfrac{1}{\pi} {\Gamma(\tfrac{5}{3})}\ {}_2F_3\bigl(\tfrac{5}{12},\tfrac{11}{12};\tfrac{1}{3},\tfrac{1}{2},\sfrac{5}{6};-\sfrac{4}{729}(\sfrac{x-\mu}{c})^6\bigr) \\
& {} - \sfrac{1}{3\pi} (\sfrac{x-\mu}{c})^2 \ {}_3F_4\bigl( \sfrac{3}{4},1,\sfrac{5}{4};\sfrac{2}{3},\sfrac{5}{6},\sfrac{7}{6},\sfrac{4}{3};-\sfrac{4}{729}(\sfrac{x-\mu}{c})^6 \bigr) \\
& {} + \sfrac{7}{81\pi} {\Gamma(\sfrac{4}{3})} (\sfrac{x-\mu}{c})^4 \ {}_2F_3\bigl( \sfrac{13}{12},\sfrac{19}{12};\sfrac{7}{6},\sfrac{3}{2},\sfrac{5}{3};- \sfrac{4}{729} (\sfrac{x-\mu}{c})^6 \bigr) \checked
\end{align*}
%===========================================================================
\secbreak
\dist{K} distribution~\cite{Malik1968,Jakeman1978,Redding1999,Withers2013}:
\begin{align}
\label{K}
\opr{K}(x\given s, \alpha_1, \alpha_2) &=
\frac{2}{|s| \Gamma(\alpha_1)\Gamma(\alpha_2)}
\Bigl( \frac{x}{s} \Bigr)^{\half(\alpha_1+\alpha_2 )-1} K_{\alpha_1-\alpha_2} \Bigl(2 \sqrt{\frac{x}{s}} \Bigr) \checked
\\
& x\geq 0, \alpha_1>0, \alpha_2>0 \notag
\end{align}
Note that modified Bessel function of the second kind (p.\pageref{ModBesselSecond}) is symmetric with respect to its argument, $K_{v}(+z)= K_{v}(-z)$. Thus the K-distribution is symmetric with respect to the two shape parameters, $\opr{K}(x\given s, \alpha_1, \alpha_2) = \opr{K}(x\given s, \alpha_2,\alpha_1)$.
The K-distribution arises as the product of Gamma distributions~\cite{Malik1968,Redding1999,Withers2013}.
\begin{align*}
\opr{K}(s_1 s_2, \alpha_1, \alpha_2)
\sim \opr{Gamma}_1(0,s_1, \alpha_1) \opr{Gamma}_2(0,s_2, \alpha_2) \checked
\end{align*}
The K-distribution has applications to radar scattering~\cite{Jakeman1978,Redding1999} and superstatistical thermodynamics~\cite[Eq.~21]{Dixit2013}.
\secbreak
%===========================================================================
\dist{Irwin-Hall} (uniform sum) distribution~\cite{Irwin1927, Hall1927, Johnson1995}:
\begin{align}
\label{IrwinHall}
\opr{IrwinHall} (x\given n) =\frac{1}{2\Left(n-1\Right)!}\sum_{k=0}^{n}\Left(-1\Right)^k\binom{n}{k}\Left(x-k\Right)^{n-1}\op{sgn}(x-k)
\checked
\end{align}
The sum of $n$ independent standard uniform variates.
\[
\opr{IrwinHall}(n) \sim \sum_{i=1}^{n} \opr{Uniform}_i(0,1) \checked
\notag
\]
Related to the Bates distribution \eqref{Bates}. For $n=1$ we recover the uniform distribution \eqref{Uniform}, and with $n=2$ the triangular distribution~\eqref{Triangular}.
\secbreak
\dist{Johnson \texorpdfstring{$S_U$}{SU}} distributions~\cite{Johnson1949a,Johnson1994}:
\[
\label{JohnsonSU}
\opr{JohnsonSU}(x\given\mu, \sigma, \gamma, \delta) =
\frac{\delta}{\lambda\sqrt{2\pi}} \frac{1}{\sqrt{1 + \Left(\frac{x-\xi}{\lambda}\Right)^2}} e^{-\frac{1}{2}\Left(\gamma+\delta \sinh^{-1} \Left(\frac{x-\xi}{\lambda}\Right)\Right)^2} \checked
\]
Johnson's distributions are transforms of the normal distribution,
\[
\op{Johnson}_g(\mu, \sigma, \gamma, \delta) \sim \sigma g(\tfrac{\op{StdNormal}()-\gamma)}{\delta}) + \mu
\notag
\checked
\]
Where for Johnson $S_U$ the function is $g(x)=\sinh(x)$.
For Johnson $S_B$ the function is $g(x)=1/(1+\exp(x))$, for Johnson $S_L$, $g(x)=\exp(x))$ (i.e. log-normal), and for Johnson $S_N$ the function is constant, recapitulating the normal distribution.
\secbreak
%===========================================================================
\dist{Landau} distribution~\cite{Landau1944}:
\begin{align}
\label{Landau}
\opr{Landau}(x\given \mu,c) = \opr{Stable}(x\given \mu,c,1,1) \checked
\end{align}
A stable distribution~\eqref{Stable}.
Describes the average energy loss of a charged particles traveling through a thin layer of matter~\cite{Landau1944}.
\secbreak
\dist{Log-Cauchy} distribution~\cite{Marshall2007}:
\begin{align}
\label{LogCauchy}
\opr{LogCauchy}(x\given a, s, \beta) &= \frac{|\beta|}{|s| \pi } \Left(\frac{x-a}{s}\Right)^{-1} \frac{1}{1 +\Left( \ln\Left(\frac{x-a}{s}\Right)^\beta \Right)^2 }
\checked
\end{align}
A log-stable distribution with very heavy tails.
The anti-log transform of the Cauchy distribution~\eqref{Cauchy}.
\[
\opr{LogCauchy}(0,s,\beta) & \sim \exp\bigl(-\opr{Cauchy}(-\ln s,\sfrac{1}{\beta})\bigr)
\notag
\checked
\]
% Not a special case of GenBetaPrime, despite rumors to the contrary.
\secbreak
%===========================================================================
\dist{Meridian} distribution~\cite[Eq.\ 18]{Aysal2007} :
\begin{align}
\label{Meridian}
\opr{Meridian}(x\given a,s) = \frac{1}{2|s|} \frac{1}{\Left(1 + |\tfrac{x-a}{s}| \Right)^2} \checked
\end{align}
The Laplace ratio distribution~\cite{Aysal2007}.
\[
\opr{Meridian}(x\given 0,\tfrac{s_1}{s_2}) \sim \frac{\opr{Laplace}_1(0,s_1)} {\opr{Laplace}_2(0,s_2)}
\checked
\notag
\]
A special case of the generalized Pearson VII distribution \eqref{GenPearsonVII}.
\secbreak
%===========================================================================
\dist{Noncentral chi} (Noncentral $\chi$) distribution~\cite{Fisher1928,Johnson1995}:
\begin{align}
\label{NoncentralChi}
\opr{NoncentralChi}&(x\given k,\lambda) =
\lambda e^{-\frac{1}{2}(x^2+\lambda^2)} \Left(\frac{x}{\lambda}\Right)^{\frac{k}{2}} I_{\frac{k}{2}-1}(\lambda x)
\\ & k, \lambda, x \text{ in } \mathbb{R}, >0 \checked
\notag
\end{align}
Here, $I_v(z)$ is a modified Bessel function of the first kind (p.\pageref{ModBesselFirst}). A generalization of the chi distribution~\eqref{Chi}.
\[
\opr{NoncentralChi}(k,\lambda) \sim \sqrt{\opr{NoncentralChiSqr}(k,\lambda)} \notag
\]
\secbreak
%===========================================================================
\dist{Noncentral chi-square} (Noncentral $\chi^2$, ${\chi'}^2$) distribution~\cite{Fisher1928,Johnson1995}:
\begin{align}
\label{NoncentralChiSqr}
\opr{NoncentralChiSqr}&(x\given k,\lambda) =
\frac{1}{2}e^{-(x+\lambda)/2} \Left(\frac{x}{\lambda}\Right)^{\frac{k}{4} -\frac{1}{2}} I_{\frac{k}{2}-1}(\sqrt{\lambda x})
\checked
\\ & k, \lambda, x \text{ in } \mathbb{R}, >0
\notag
\end{align}
Here, $I_v(z)$ is a modified Bessel function of the first kind (p.\pageref{ModBesselFirst}). A generalization of the chi-square distribution. The distribution of the sum of $k$ squared, independent, normal random variables with means $\mu_i$ and standard deviations $\sigma_i$,
\[
\opr{NoncentralChiSqr}(k,\lambda) \sim \sum_{i=1}^{k} \bigl(\frac{1}{\sigma_i} \opr{Normal}_i(\mu_i, \sigma_i)\bigr)^2 \checked
\notag
\]
where the noncentrality parameter $\lambda = \sum_{i=1}^k (\mu_i/\sigma_i)^2$. \checked
\secbreak
%===========================================================================
\dist{Noncentral F} distribution~\cite{Fisher1928, Johnson1995}:
\begin{align}
\label{NoncentralF}
\opr{NoncentralF}(k_1,k_2,\lambda_1,\lambda_2) &\sim \frac{\opr{NoncentralChiSqr}_1(k_1,\lambda_1)/k_1 }{\opr{NoncentralChiSqr}_2(k_2,\lambda_2)/k_2 }
\checked
\notag
\\
& \text{for } k_1,k_2,\lambda_1,\lambda_2 > 0 \notag \\
& \text{support } x>0
\end{align}
The ratio distribution of noncentral chi square distributions. If both centrality parameters $\lambda_1,\lambda_2$ are non zero, then we have a {\bf doubly noncentral F} distribution; if one is zero then we have a {\bf singly noncentral F distribution}; and if both are zero we recover the standard F distribution~\eqref{F}.
%===========================================================================
\secbreak
\dist{Pseudo-Voigt} distribution~\cite{Wertheim1974}:
\begin{align}
\label{PseudoVoigt}
\opr{PseudoVoigt}(x\given a,\sigma, s, \eta) &= (1-\eta) \opr{Normal}(x\given a,\sigma) + \eta \opr{Cauchy}(x\given a,s)
\notag \checked
\\
& \text{ for } 0\leq\eta\leq1
\end{align}
A linear mixture of Cauchy (Lorentzian) and normal distributions. Used as a more analytically tractable approximation to the Voigt distribution \eqref{Voigt}.
\secbreak
%===========================================================================
\dist{Rice} (Rician, Rayleigh-Rice, generalized Rayleigh) distribution~\cite{Rice1945,Talukdar1991}:
\begin{align}
\label{Rice}
\opr{Rice}(x\given \nu,\sigma) = & \frac{x}{\sigma^2} \exp\Left(-\frac{x^2+\nu^2 }{2\sigma^2} \Right) I_0(\frac{x |\nu|}{\sigma^2})
\checked
\\
& x>0 \notag
\end{align}
Here, $I_0(z)$ is a modified Bessel function of the first kind (p.\pageref{ModBesselFirst}).
The absolute value of a circular bivariate normal distribution, with non-zero mean,
\[
\opr{Rice}(\nu,\sigma) \sim \sqrt{\opr{Normal}^2_1(\nu \cos \theta,\sigma) +\opr{Normal}^2_2(\nu \sin \theta,\sigma) }
\checked \notag
\]
thus directly related to a special case of the noncentral chi-square distribution~\eqref{NoncentralChiSqr}.
\[
\opr{Rice}(\nu,1)^2 \sim \opr{NoncentralChiSqr}(2,\nu^2) \checked
\notag
\]
\secbreak
%===========================================================================
\dist{Slash} distribution~\cite{Rogers1972, Johnson1994}:
\begin{align}
\label{Slash}
\opr{Slash}(x) = \frac{\oprr{StdNormal}{Normal}(x)-\oprr{StdNormal}{Normal}(x)}{x^2} \checked
\end{align}
The standard normal -- standard uniform ratio distribution,
\[
\opr{Slash}() \sim \frac{\oprr{StdNormal}{Normal}()}{\opr{StdUniform}()} \checked
\notag
\]
Note that $lim_{x\rightarrow 0} \opr{Slash}(x)= 1/\sqrt{8\pi}$\checked.
%===========================================================================
\secbreak
\dist{Stable} (L\'evy skew alpha-stable, L\'{e}vy stable) distribution~\cite{Nolan2015}:\index{log-stable}
The PDF of the stable distribution does not have a closed form in general. Instead, the stable distribution can be defined via the characteristic function
\begin{align}
\label{Stable}
\op{StableCF}(t\given \mu,c,\alpha,\beta) =
\exp \bigl(i t \mu - |c t|^{\alpha} (1 - i\beta \op{sgn}(t) \Phi(\alpha) \bigr) \checked
\end{align}
where $\Phi(\alpha)=\tan(\pi \alpha/2)$ if $\alpha \neq 1$, else $\Phi(1)=-(2/\pi)\log|t|$. Location parameter $\mu$, scale $c$, and two shape parameters, the index of stability or characteristic exponent $\alpha\in(0,2]$ and a skewness parameter $\beta \in[-1,1]$. This distribution is continuous and unimodal~\cite{Yamazato1978}, symmetric if $\beta=0$ ({\bf L\'evy symmetric alpha-stable}), and indefinite support, unless $\beta=\pm1$ and $0<\alpha\leq1$, in which case the support is semi-infinite. If $c$ or $\alpha$ is zero, the distribution limits to the degenerate distribution, \secref{sec:Uniform}. Non-normal stable distributions ($\alpha<2$) are called {\bf stable Paretian distributions}, since they all have long, Pareto tails.
\begin{table*}[bth]
\begin{center}
\caption[Stable distribution -- Special cases]{Special cases of the stable family}
~\\
{\renewcommand{\arraystretch}{1.25}
\begin{tabular}{llcccc}
\eqref{Stable} & stable & $\mu$&$c$&$\alpha$&$\beta$ \\
\hline
\eqref{Cauchy} & Cauchy & . & . & 1 & 0 \\
\eqref{Holtsmark} & Holtsmark &. & . & \sfrac{3}{2} &0 \\
\eqref{Normal} & normal & . & . & 2 & 0 \\
\eqref{Levy} & L\'{e}vy &. & . & \half & 1 \\
\eqref{Landau} & Landau &. & . &1 & 1
\end{tabular}
}
\end{center}
\end{table*}
A distribution is stable if it is closed under scaling and addition,
\begin{align*}
a_1\, \opr{Stable}_1(\mu,c,\alpha,\beta) + a_2\, \opr{Stable}_2(\mu,c,\alpha,\beta)
\sim a_3 \,\opr{Stable}_3(\mu,c,\alpha,\beta) + b \checked
\end{align*}
for real constants $a_1,a_2,a_3,b$. The anti-log transform of a stable distribution is log-stable: it is stable under multiplication instead of addition\index{stable}.
There are three special cases of the stable distribution where the probability density functions can be expressed with elementary functions: The normal \eqref{Normal}, Cauchy \eqref{Cauchy}, and L\'evy \eqref{Levy} distributions, all of which are simple.
%===========================================================================
\secbreak
\dist{Suzuki} distribution~\cite{Suzuki1977}. A compounded mixture of Rayleigh and log-normal distributions
\begin{align}
\label{Suzuki}
\opr{Suzuki}(\vartheta,\sigma) & \sim \opr{Rayleigh}(\sigma') \mix{\sigma'} \opr{LogNormal}(0, \vartheta,\sigma)
\checked
\end{align}
Introduced to model radio propagation in cluttered urban environments.
%===========================================================================
\secbreak
\dist{Triangular} (tine) distribution~\cite{Evans2000}:
\begin{align}
\label{Triangular}
\opr{Triangular}(x\given a,b,c) =
\begin{cases}
\frac{2 (x-a)}{(b-a)(c-a)} & a\leq x \leq c \checked \\
\frac{2 (b-x)}{(b-a)(b-c)} & c\leq x \leq b \checked
\end{cases}
\end{align}
Support $x\in[a,b]$ and mode $c$. The wedge distribution \eqref{Wedge} is a special case.
\secbreak
\dist{Uniform difference} distribution~\cite{Springer1979a}:
\begin{align}
\label{UniformDiff}
\opr{UniformDiff}(x) \checked & =
\begin{cases}
(1+x) & -1\geq x \geq 0 \\
(1-x) & 0\geq x \geq 1
\end{cases}
\\ \notag & = \opr{Triangular}(x\given -1,1,0) \checked
\end{align}
The difference of two independent standard uniform distributions~\eqref{StdUniform}.
%===========================================================================
\secbreak
\dist{Voigt} (Voigt profile, Voigtian) distribution~\cite{Armstrong1967}:
\begin{align}
\label{Voigt}
\opr{Voigt}(a,\sigma,s) = \opr{Normal}(0,\sigma) + \opr{Cauchy}(a,s) \checked
\end{align}
The convolution of a Cauchy (Lorentzian) distribution with a normal distribution. Models the broadening of spectral lines in spectroscopy~\cite{Armstrong1967}. See also Pseudo Voigt distribution~\eqref{PseudoVoigt}.