-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChPowerFn.tex
269 lines (209 loc) · 10.6 KB
/
ChPowerFn.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\subpart{One shape parameter}
\Sec{Power Function Distribution}
\label{sec:PowerFn}
\dist{Power function} (power) distribution~\cite{Pearson1916, Meniconi1996,Johnson1995}
is a three parameter, continuous, univariate, unimodal probability density, with finite or semi-infinite support. The functional form in the most straightforward parameterization consists of a single power function.
\begin{align}
\label{PowerFn}
\opr{PowerFn}(x\given a,s,\beta) &=
\Left|\frac{\beta}{ s}\Right|
\Left(\frac{x-a}{s} \Right)^{\beta -1} \checked
%\\ &= \opr{GenBeta}(x\given a,s , \alpha,1,1) \notag
\\
\notag \text{for } & x, a, s, \beta \text{ in } \mathbb{R}
\\ \text{ support } & x \in [a,a+s], s>0,\ \beta>0 \notag \checked
\\ \text{ or } & x\in[a+s,a], s<0,\ \beta>0 \checked
\notag
\\ \notag \text{ or } & x\in[a+s,+\infty], s>0,\ \beta<0 \checked
\\ \notag \text{ or } & x\in[-\infty,a+s], s<0,\ \beta<0 \checked
\notag
\end{align}
%
% Pearson~\cite{Pearson1916, Johnson1994} noted two special cases, the monotonically decreasing {\bf Pearson type VIII} $0<\beta <1$, and the monotonically increasing {\bf Pearson type IX} distribution~\cite{Pearson1916, Johnson1994} with $\beta>1$.
With positive $\beta$ we obtain a distribution with finite support. But by allowing $\beta$ to extend to negative numbers, the power function distribution also encompasses the semi-infinite Pareto distribution \eqref{Pareto}, and in the limit $\beta\rightarrow\infty$ the exponential distribution \eqref{Exp}.
\SSec{Alternative parameterizations}
\dist{Generalized Pareto} distribution: An alternative parameterization that emphasizes the limit to exponential.
\begin{align}
\label{GenPareto}
\opr{GenPareto}&(x\given a',s',\xi)
\\ & =
\begin{cases}
\frac{1}{|\theta|}\Left( 1 + \xi \frac{x-\pLoc}{\theta}\Right)^{-\tfrac{1}{\xi}-1} & \xi \neq 0 \checked
\notag
\\
\frac{1}{|\theta|} \exp \Left(-\frac{x-\pLoc}{\theta} \Right)& \xi = 0 \checked
\notag
\end{cases}
\\
& = \opr{PowerFn}(x\given \pLoc-\tfrac{\theta}{\xi},\tfrac{\theta}{\xi}, -\tfrac{1}{\xi}) \checked
\notag
\end{align}
\dist{q-exponential} (generalized Pareto) distribution is an alternative parameterization of the power function distribution, utilizing the Tsallis generalized q-exponential function, $\exp_q(x)$ \secref{sec:Limits}.
\begin{align}
\label{QExp}
\opr{QExp}&(x\given \pLoc,\theta,q) \\
\notag
= & \frac{(2-q)}{|\theta|} \exp_q\Left(- \frac{x-\pLoc}{\theta} \Right) \checked
\\
= &
\begin{cases}
\frac{(2-q)}{|\theta|}\Left(1 - (1-q) \frac{x-\pLoc}{\theta} \Right)^{\frac{1}{1-q}} & q \neq 1 \checked
\\
\notag
\tfrac{1}{|\theta| }\exp\Left(- \frac{x-\pLoc}{\theta} \Right) & q=1 \checked
\end{cases}
\notag
\\
=& \opr{PowerFn}(x\given \pLoc+\frac{\theta}{1-q},-\frac{\theta}{1-q},\frac{2-q}{1-q}) \checked
\notag
\\
\notag \text{for } & x, \pLoc, \theta, q \text{ in } \mathbb{R}
\end{align}
\begin{figure}[p]
\begin{center}
\includegraphics[width=\textwidth]{pdfPowerFn}
\end{center}
\caption[Pearson IX distributions]{Pearson type IX, $\opr{PowerFn}(x\given 0,1,\beta)$, $\beta>1$
}
\end{figure}
%
%
\begin{figure}[p]
\begin{center}
\includegraphics[width=\textwidth]{pdfPowerFn2}
\end{center}
\caption[Pearson VIII distributions]{Pearson type VIII, $\opr{PowerFn}(x\given 0,1,\beta)$, $0<\beta<1$. }
\end{figure}
%
\begin{figure}[tp]
\begin{center}
\includegraphics[width=\textwidth]{pdfPareto}
\end{center}
\caption[Pareto distributions]{Pareto distributions, $\opr{Pareto}(x\given 0,1,\gamma)$, $\gamma$ left axis.}
\end{figure}
\SSec{Special cases: Positive \texorpdfstring{$\beta$}{beta}}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Pearson IX}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Pearson VIII}
Pearson~\cite{Pearson1916, Johnson1994} noted two special cases, the monotonically decreasing {\bf Pearson type VIII} $0<\beta <1$, and the monotonically increasing {\bf Pearson type IX} distribution~\cite{Pearson1916, Johnson1994} with $\beta>1$.
\dist{Wedge} distribution~\cite{Johnson1994}:
\begin{align}
\label{Wedge}
\opr{Wedge}(x\given a,s) &= 2\ \op{sgn}(s) \frac{x-a}{s^2} \checked
\\& = \opr{PowerFn}(x\given a,s,2) \notag \checked
\end{align}
With a positive scale we obtain an {\bf ascending wedge} (right triangular) distribution, and with negative scale a {\bf descending wedge} (left triangular).
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Ascending wedge}
\phantomsection\addcontentsline{toc}{subsection}{~~~~~~~~~~~~Descending wedge}
\SSec{Special cases: Negative \texorpdfstring{$\beta$}{beta}}
\dist{Pareto} (Pearson XI, Pareto type I) distribution~\cite{Pareto1964, Pearson1916, Johnson1994}:
\begin{align}
\label{Pareto}
\opr{Pareto}(x\given a,s,\gamma) &= \Left| \frac{\gamma}{s}\Right| \Left(\frac{x-a}{s}\Right)^{\gamma-1} \qquad \gamma>0
\checked
\\ \notag & \qquad x > a+s, \ s>0
\\ \notag & \qquad x < a+s, \ s<0
\\ \notag &= \opr{PowerFn}(x\given a, s, -\gamma) \checked
\end{align}
The most important special case is the Pareto distribution, which has a semi-infinite support with a power-law tail. The Zipf distribution \index{Zipf distribution} is the discrete analog of the Pareto distribution.
\dist{Lomax} (Pareto type II, ballasted Pareto) distribution~\cite{Lomax1954}:
\begin{align}
\label{Lomax}
\opr{Lomax}(x\given a, s, \bar{\beta}) &= \frac{\bar{\beta}}{|s|} \Left(1+\frac{x-a}{s}\Right)^{-\bar{\beta}-1} \checked
\\ \notag & = \opr{Pareto}(x\given a-s, s, \bar{\beta}) \checked
\\ \notag & = \opr{PowerFn}(x \given a-s, s, -\bar{\beta}) \checked
\end{align}
Originally explored as a model of business failure. The alternative name ``ballasted Pareto'' arises since this distribution is a shifted Pareto distribution~\eqref{Pareto} whose origin is fixed at zero, and no longer moves with changes in scale.
\dist{Exponential ratio} distribution~\cite{\self}:
\begin{align}
\label{ExpRatio}
\opr{ExpRatio}(x\given s) &= \frac{1}{|s|} \frac{1}{\Left(1+\frac{x}{s}\Right)^{2}} \checked
& \\ \notag &= \opr{Lomax}(x\given 0, s,1)\checked
& \\ \notag &= \opr{PowerFn}(x\given -s, s,1)\checked
\end{align}
Arises as the ratio of independent exponential distributions (p~\pageref{sec:ExpRatio}).
\dist{Uniform-prime} distribution~\cite{Jones2004,\self}:
\begin{align}
\label{UniPrime}
\opr{UniPrime}(x\given a,s) &= \frac{1}{|s|} \frac{1}{\Left(1+\frac{x-a}{s}\Right)^{2}} \checked
& \\ \notag &= \opr{Lomax}(x\given a, s,1) \checked
& \\ \notag &= \opr{PowerFn}(x\given a-s, s,-1) \checked
\end{align}
An exponential ratio~\eqref{ExpRatio} distribution with a shift parameter. So named since this distribution is related to the uniform distribution as beta is to beta prime. The ordering distribution \secref{OrderStatistic} of the beta-prime distribution.
%
% Mentioned in Jones2004, sec 6.2, as $F_{2,2}$ and in section 6.3.2 as ordering distribution
\begin{table*}[tp]
\caption[Power function distribution -- Special cases]{Special cases of the power function distribution}
\begin{center}
{\renewcommand{\arraystretch}{1.25}
\begin{tabular}{llccc@{\extracolsep{5pt}} l}
\eqref{PowerFn} &power function& $a$ & $s$ & $\beta$ &
\\ \hline
\eqref{Pareto} & Pareto & . & . & $<\!\!0$ & \\
\eqref{UniPrime} & uniform prime & .& . & -1 & \\
\eqref{PowerFn} & Pearson type VIII & 0 & . & $(0,1)$ &\\
\eqref{Uniform} & uniform & . & . & $1$ &\\
\eqref{PowerFn} & Pearson type IX & 0 & . & $>\!\!1$ & \\
\eqref{Wedge} & wedge & . & . & 2 & \\
\eqref{Exp} & exponential & . & . & +$\infty$ & \\
\end{tabular}
}
\end{center}
\end{table*}
\SSec{Limits and subfamilies}
With $\beta=1$ we recover the uniform distribution.
\[
\opr{PowerFn}(a,s,1) \sim \opr{Uniform}(a,s) \checked
\notag
\]
As $\beta$ limits to infinity, the power function distribution limits to the exponential distribution \eqref{Exp}.
\begin{align*}
\opr{Exp}(x\given \nu,\lambda) &= \lim_{\beta\rightarrow\infty} \opr{PowerFn} (x\given \nu-\beta\lambda,\beta\lambda,\beta) \checked \\
&= \lim_{\beta\rightarrow\infty} \Left|\frac{1}{ \lambda}\Right| \Left(1+\frac{x-\nu}{\beta\lambda} \Right)^{\beta -1}
\checked
\end{align*}
Recall that $\lim_{c\rightarrow\infty} \Left(1 + \frac{x}{c} \Right)^{c} = e^x$. \checked
\SSec{Interrelations}
With positive $\beta$, the power function distribution is a special case of the beta distribution \eqref{Beta}, with negative beta, a special case of the beta prime distribution \eqref{BetaPrime}, and with either sign a special case of the generalized beta \eqref{GenBeta} and unit gamma \eqref{UnitGamma} distributions.
\begin{align*}
\opr{PowerFn}& (x\given a,s,\beta)
\\ & = \opr{GenBeta}(x\given a,s , 1,1,\beta) \checked
\\ & = \opr{GenBeta}(x\given a,s , \beta,1,1) & \beta>0 \checked
\\ & \quad = \opr{Beta}(x\given a,s , \beta,1) & \beta>0 \checked
\\ & = \opr{GenBeta}(x\given a+s,s ,1,-\beta,-1) & \beta<0\checked
\\ & \quad = \opr{BetaPrime}(x\given a+s,s , 1,-\beta) & \beta<0\checked
\\ & = \opr{UnitGamma}(x\given a,s,1, \beta) \checked
\end{align*}
The order statistics \secref{OrderStatistic} of the power function distribution yields the generalized beta distribution \eqref{GenBeta}.
\begin{align*}
\opr{OrderStatistic}_{\opr{PowerFn}(a,s,\beta)} &(x \given \alpha, \gamma) = \opr{GenBeta}(x\given a, s, \alpha,\gamma, \beta)
\checked
\end{align*}
Since the power function distribution is a special case of the generalized beta distribution \eqref{GenBeta},
\[
\opr{GenBeta}(x\given a, s, \alpha,1, \beta) = \opr{PowerFn}(x\given a,s,\alpha\beta) \checked
\notag
\]
it follows that the power function family is closed under maximization for $\tfrac{\beta}{s} > 0$ and minimization for $\tfrac{\beta}{s}<0$.
The product of independent power function distributions (With zero location parameter, and the same $\beta$) is a unit-gamma distribution \eqref{UnitGamma}~\cite{Consul1971}.
\[
\prod_{i=1}^{\alpha} \opr{PowerFn}_i(0,s_i,\beta) \sim \opr{UnitGamma}(0, \prod_{i=1}^{\alpha} s_i, \alpha, \beta) \checked
\notag
\]
Consequently, the geometric mean of independent, anchored power function distributions (with common $\beta$) is also unit-gamma.
\[
\sqrt[\alpha]{\prod_{i=1}^{\alpha} \opr{PowerFn}_i(0,s_i,\beta)} \sim \opr{UnitGamma}(0, \prod_{i=1}^{\alpha} s_i, \alpha, \alpha \beta) \checked
\notag
\]
The power function distribution can be obtained from the Weibull transform $x\rightarrow (\tfrac{x-a}{s})^{\beta}$ of the uniform distribution \eqref{Uniform}.
\[
\opr{PowerFn}(a,s,\beta) \sim a + s\ \opr{StdUniform}()^{\tfrac{1}{\beta}} \checked
\notag
\]
The power function distribution limits to the exponential distribution \secref{sec:Exp}.
\[
\opr{Exp}(x\given a,\theta) &= \lim_{\beta\rightarrow\infty} \opr{PowerFn} (x\given a+\beta\theta,-\beta\theta,\beta)
\notag
\]
\input{PropertiesTablePowerFunc}