-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPropertiesTableGenBetaPrime.tex
60 lines (56 loc) · 2.37 KB
/
PropertiesTableGenBetaPrime.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% !TEX encoding = UTF-8 Unicode
% !TEX root = FieldGuide.tex
\begin{table*}[p]
\caption[Generalized beta prime distribution -- Properties]{Properties of the generalized beta prime distribution}
\begin{align*}
\text{\hyperref[PropertiesSec]{Properties}} \quad& \\
\text{notation} \quad & \text{GenBetaPrime}(x\given a, s, \alpha,\gamma,\beta) \checked
\\
\text{PDF}\quad & \frac{1}{B(\alpha, \gamma)} \Left|\frac{\beta}{s}\Right|
\Left(\frac{x-a}{s}\Right)^{\alpha\beta -1} \Left(1+ \Left(\frac{x-a}{s}\Right)^\beta \Right)^{-\alpha-\gamma } \checked
\hspace{-30em}
\\
\text{CDF / CCDF} \quad &
\frac{B\big(\alpha, \gamma; (1+(\tfrac{x-a}{s})^{-\beta})^{-1} \big) }{B(\alpha,\gamma)} \checked
\hspace{-7em}
& \tfrac{\beta}{s} >0 \,\big/ \, \tfrac{\beta}{s} <0
\\
& \quad = I\Left( \alpha,\gamma; (1+(\tfrac{x-a}{s})^{-\beta})^{-1} \Right) \checked
% See McDonald1984, table 3.1 GB2. Expresses incomplete beta function as hypergeometric function.
\\
\text{parameters}\quad & a,\ s,\ \alpha,\ \gamma,\ \beta \text{ in } \Real \checked
\\ & \alpha>0, \gamma>0 \checked
\\
\text{support} \quad & x \geq a & s > 0
\\
& x\leq a & s < 0
\\
%\text{median} \quad & \cdots
%\\
% \text{mode} \quad & \cdots
% \\
\text{mean} \quad & a+\frac{s B(\alpha+\tfrac{1}{\beta},\gamma- \tfrac{1}{\beta}) }{B(\alpha,\gamma)}
\checked & -\alpha< \tfrac{1}{\beta} <\gamma \checked
% % See McDonald1984, table 3.1 GB2
\\
\text{variance} \quad &s^2\Left[\frac{ B(\alpha+\tfrac{2}{\beta},\gamma- \tfrac{2}{\beta}) }{B(\alpha,\gamma)} - \Left(\frac{ B(\alpha+\tfrac{1}{\beta},\gamma- \tfrac{1}{\beta}) }{B(\alpha,\gamma)}\Right)^2 \Right] \hspace{-15em}
& -\alpha< \tfrac{2}{\beta} <\gamma \checked
\\
\text{skew} \quad & \text{not simple}
\\
\text{ex. kurtosis} \quad & \text{not simple}
%\\
%\text{entropy} \quad & \ln \frac{1}{B(\alpha, \gamma)} \Left|\frac{\beta}{s}\Right|
% +(\tfrac{1}{\beta}-\alpha) \big[ \psi(\alpha) - \psi(\gamma)\big]
% \hspace{-7em}
% \\
%& \quad +(\alpha+\gamma) \big[ \psi(\alpha+\gamma) - \psi(\gamma)\big] \checked & \text{\cite[Eq.~(15)]{Tahmasebi2010}} % Not correct?
\\
% \text{MGF} \quad & \cdots
% \\
% \text{CF} \quad & \cdots
% \\
E[ X^h] \quad & \frac{|s|^h B(\alpha+\tfrac{h}{\beta},\gamma- \tfrac{h}{\beta}) }{B(\alpha,\gamma)}
& \!\!a=0,\ -\alpha< \tfrac{h}{\beta} <\gamma \quad \text{\cite{McDonald1984}} \checked
\end{align*}
\end{table*}