-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
90 lines (80 loc) · 3.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from menace import MenaceAgent
from tictactoe import PerfectAgent, TurnRecord, get_game_state, RandomAgent
from collections import deque
import json
from typing import Dict
def play_game(player_one, player_two, mirror_for_player_two=False):
turns = []
position = [0] * 9
game_state = -1
while game_state == -1:
player_one_move = player_one.move(position)
turns.append(TurnRecord(position.copy(), player_one_move))
position[player_one_move] = 1
game_state = get_game_state(position)
if(game_state == -1):
player_two_position = position
if mirror_for_player_two:
player_two_position = [0] * 9
for i in range(0, 9):
player_two_position[i] = 1 if position[i] == 2 else (2 if position[i] == 1 else 0)
player_two_move = player_two.move(player_two_position)
position[player_two_move] = 2
game_state = get_game_state(position)
return (turns, game_state, position)
def save_menace_weights(filename, weights: Dict[int, list[int]]):
str = json.dumps(weights)
with open(f"./{filename}", "w") as f:
f.write(str)
def generate_models():
agent = MenaceAgent()
save_menace_weights("menace_agent_untrained.json", agent.position_weight_table)
training_agent = PerfectAgent(2)
validation_agent = PerfectAgent(2)
episodes = 5000
start_explore = 1
end_explore = 0
episodes_per_diff = 10
explore_diff_rate = (end_explore - start_explore) / (episodes / episodes_per_diff)
training_agent.explore_rate = start_explore
saved = 0
for i in range(0, episodes):
(turns, game_state, position) = play_game(agent, training_agent)
agent.learn_from_game(turns, game_state)
if i != 0 and i % episodes_per_diff == 0:
training_agent.explore_rate = training_agent.explore_rate + explore_diff_rate
if i % 5 == 0:
results = deque(maxlen=100)
for j in range(0, 100):
(turns, game_state, position) = play_game(agent, validation_agent)
results.append(1 if game_state == 1 or game_state == 0 else 0)
win_rate = sum(results) / len(results)
if win_rate >= 0.25 and saved == 0:
save_menace_weights("menace_agent_25.json", agent.position_weight_table)
saved = saved + 1
print(f"Saved 25 with {win_rate} at {i}")
if win_rate >= 0.50 and saved == 1:
save_menace_weights("menace_agent_50.json", agent.position_weight_table)
saved = saved + 1
print(f"Saved 50 with {win_rate} at {i}")
if win_rate >= 0.75 and saved == 2:
save_menace_weights("menace_agent_75.json", agent.position_weight_table)
saved = saved + 1
print(f"Saved 75 with {win_rate} at {i}")
if win_rate >= 0.95 and saved == 3:
save_menace_weights("menace_agent_95.json", agent.position_weight_table)
saved = saved + 1
print(f"Saved 95 with {win_rate} at {i}")
def main():
agent = MenaceAgent()
other_agent = PerfectAgent(2, 0.75)
results = deque(maxlen=20)
for i in range(0, 500):
(turns, game_state, position) = play_game(agent, other_agent)
agent.learn_from_game(turns, game_state)
results.append(1 if game_state == 1 or game_state == 0 else 0)
if i % 20 == 0:
win_rate = sum(results) / len(results)
print(win_rate)
if __name__ == "__main__":
generate_models()