-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathdemo.py
68 lines (56 loc) · 2.54 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
'''
demo for predict one image, and visualizate.
'''
import os
import cv2
import yaml
import torch
import random
import argparse
import numpy as np
from PIL import Image
from utils.util import check_path
import torchvision.transforms.functional as tf
img_formats = ['jpg', 'png', 'tif', 'jpeg']
def predict(args, save_img=True):
# load parameter.yaml
with open(args.cfg_path, 'r', encoding='utf-8') as f:
param_dict = yaml.load(f, Loader=yaml.FullLoader)
mean = param_dict['mean']
std = param_dict['std']
class_names = param_dict['class_names']
# save dir check exist
check_path(args.output)
# load model
device = torch.device("cuda:{}".format(args.device))
model = torch.load(args.weights, map_location=device)['model'].eval() # if fail, before eval() add .to(device)
# label color, _background_->(0,0,0)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in class_names[1:]]
colors.insert(0, [0,0,0])
# imread image
names = os.listdir(args.source)
img_names = [name for name in names if name.split('.')[-1].lower() in img_formats]
with torch.no_grad():
for img_name in img_names:
img = cv2.imread(os.path.join(args.source, img_name), cv2.IMREAD_COLOR)[..., ::-1] # bgr->rgb
img_ = Image.fromarray(img, mode="RGB")
# ToTensor -> Normalize -> gpu [1,3,H,W]
img_norm = tf.normalize(tf.to_tensor(img_), mean, std).to(device)
pred = model(img_norm) # [1,Class_num,H,W]
pred_ = pred.argmax(dim=1)[0].cpu().numpy()
pred3 = np.zeros(pred_.shape+(3,), dtype=np.uint8)
if save_img:
for i in range(len(class_names)):
pred3[pred_==i] = colors[i]
cv2.imwrite(os.path.join(args.output, img_name), pred3)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser("Semantic segmentation Predict")
parser.add_argument("--weights", type=str, default=r'./runs/exp/weights/best.pt', help="weight's path")
parser.add_argument("--cfg_path", type=str, default=r'./configs/parameter.yaml', help="config param")
parser.add_argument("--source", type=str, default=r'./data/images', help="input source")
parser.add_argument("--device", type=str, default='0', help="gpu id, suggest 1 gpu")
parser.add_argument("--output", type=str, default=r'./outputs', help="save dir")
# parser.add_argument("--img_size", type=int, default=512, help="input image size") # Any size
args = parser.parse_args()
predict(args, save_img=True)