-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlobsdice.py
230 lines (200 loc) · 11.8 KB
/
lobsdice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import tensorflow as tf
from tensorflow_gan.python.losses import losses_impl as tfgan_losses
import utils
import pickle
import os
EPS = np.finfo(np.float32).eps
EPS2 = 1e-3
class LobsDICE(tf.keras.layers.Layer):
""" Class that implements L training """
def __init__(self, state_dim, action_dim, is_discrete_action: bool, config):
super(LobsDICE, self).__init__()
hidden_size = config['hidden_size']
critic_lr = config['critic_lr']
actor_lr = config['actor_lr']
self.is_discrete_action = is_discrete_action
self.closed_form_mu = config['closed_form_mu']
self.state_matching = config['state_matching']
self.grad_reg_coeffs = config['grad_reg_coeffs']
self.discount = config['gamma']
self.non_expert_regularization = config['alpha'] + 1.
self.cost = utils.Critic(state_dim, 0 if self.state_matching else state_dim, hidden_size=hidden_size,
use_last_layer_bias=config['use_last_layer_bias_cost'],
kernel_initializer=config['kernel_initializer'])
self.nu = utils.Critic(state_dim, 0, hidden_size=hidden_size,
use_last_layer_bias=config['use_last_layer_bias_critic'],
kernel_initializer=config['kernel_initializer'])
self.mu = utils.Critic(state_dim, 0 if self.state_matching else state_dim, hidden_size=hidden_size,
use_last_layer_bias=config['use_last_layer_bias_critic'],
kernel_initializer=config['kernel_initializer'])
if self.is_discrete_action:
self.actor = utils.DiscreteActor(state_dim, action_dim)
else:
self.actor = utils.TanhActor(state_dim, action_dim, hidden_size=hidden_size)
self.cost.create_variables()
self.nu.create_variables()
self.mu.create_variables()
self.actor.create_variables()
self.cost_optimizer = tf.keras.optimizers.Adam(learning_rate=critic_lr)
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=critic_lr)
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=actor_lr)
@tf.function
def update(self, init_states, expert_states, expert_next_states,
imperfect_states, imperfect_actions, imperfect_next_states):
with tf.GradientTape(watch_accessed_variables=False, persistent=True) as tape:
tape.watch(self.cost.variables)
tape.watch(self.actor.variables)
tape.watch(self.nu.variables)
tape.watch(self.mu.variables)
# define inputs
if self.state_matching:
expert_inputs = expert_states
imperfect_inputs = imperfect_states
else:
expert_inputs = tf.concat([expert_states, expert_next_states], -1)
imperfect_inputs = tf.concat([imperfect_states, imperfect_next_states], -1)
# call cost functions
expert_cost_val, _ = self.cost(expert_inputs)
imperfect_cost_val, _ = self.cost(imperfect_inputs)
unif_rand = tf.random.uniform(shape=(expert_states.shape[0], 1))
mixed_inputs1 = unif_rand * expert_inputs + (1 - unif_rand) * imperfect_inputs
mixed_inputs2 = unif_rand * tf.random.shuffle(imperfect_inputs) + (1 - unif_rand) * imperfect_inputs
mixed_inputs = tf.concat([mixed_inputs1, mixed_inputs2], 0)
# gradient penalty for cost
with tf.GradientTape(watch_accessed_variables=False) as tape2:
tape2.watch(mixed_inputs)
cost_output, _ = self.cost(mixed_inputs)
cost_output = tf.math.log(1 / (tf.nn.sigmoid(cost_output) + EPS2) - 1 + EPS2)
cost_mixed_grad = tape2.gradient(cost_output, [mixed_inputs])[0] + EPS
cost_grad_penalty = tf.reduce_mean(
tf.square(tf.norm(cost_mixed_grad, axis=-1, keepdims=True) - 1))
cost_loss = tfgan_losses.minimax_discriminator_loss(expert_cost_val, imperfect_cost_val, label_smoothing=0.) \
+ self.grad_reg_coeffs[0] * cost_grad_penalty
expert_cost = tf.math.log(1 / (tf.nn.sigmoid(expert_cost_val) + EPS2) - 1 + EPS2)
imperfect_cost = tf.math.log(1 / (tf.nn.sigmoid(imperfect_cost_val) + EPS2) - 1 + EPS2)
# nu learning
init_nu, _ = self.nu(init_states)
expert_mu, _ = self.mu(expert_inputs)
expert_nu, _ = self.nu(expert_states)
expert_next_nu, _ = self.nu(expert_next_states)
imperfect_mu, _ = self.mu(imperfect_inputs)
imperfect_nu, _ = self.nu(imperfect_states)
imperfect_next_nu, _ = self.nu(imperfect_next_states)
if self.closed_form_mu:
imperfect_adv_mu_r = tf.zeros_like(imperfect_cost)
imperfect_adv_mu_nu = - tf.stop_gradient(imperfect_cost) + self.discount * imperfect_next_nu - imperfect_nu
else:
imperfect_adv_mu_r = imperfect_mu - imperfect_cost
imperfect_adv_mu_nu = self.discount * imperfect_next_nu - imperfect_mu - imperfect_nu
linear_loss = (1 - self.discount) * tf.reduce_mean(init_nu)
non_linear_loss_mu_r = tf.reduce_logsumexp(imperfect_adv_mu_r)
non_linear_loss_mu_nu = self.non_expert_regularization * tf.reduce_logsumexp(imperfect_adv_mu_nu / self.non_expert_regularization)
nu_mu_loss = linear_loss + non_linear_loss_mu_r + non_linear_loss_mu_nu
# weighted BC
weight_sa = tf.expand_dims(tf.math.exp((imperfect_adv_mu_nu - tf.reduce_max(imperfect_adv_mu_nu)) / self.non_expert_regularization), 1)
weight_sa = weight_sa / tf.reduce_mean(weight_sa)
weight_ss1 = tf.expand_dims(tf.math.exp(imperfect_adv_mu_r - tf.reduce_max(imperfect_adv_mu_r)), 1)
weight_ss1 = weight_ss1 / tf.reduce_mean(weight_ss1)
pi_loss = - tf.reduce_mean(
tf.stop_gradient(weight_sa) * self.actor.get_log_prob(imperfect_states, imperfect_actions))
# gradient penalty for nu
if self.grad_reg_coeffs[1] is not None:
unif_rand2 = tf.random.uniform(shape=(expert_states.shape[0], 1))
nu_inter = unif_rand2 * expert_states + (1 - unif_rand2) * imperfect_states
nu_next_inter = unif_rand2 * expert_next_states + (1 - unif_rand2) * imperfect_next_states
nu_inter = tf.concat([imperfect_states, nu_inter, nu_next_inter], 0)
mu_inter = unif_rand2 * expert_inputs + (1 - unif_rand2) * imperfect_inputs
mu_inter = tf.concat([imperfect_inputs, mu_inter], 0)
with tf.GradientTape(watch_accessed_variables=False, persistent=True) as tape3:
tape3.watch(nu_inter)
tape3.watch(mu_inter)
nu_output, _ = self.nu(nu_inter)
mu_output, _ = self.mu(mu_inter)
nu_mixed_grad = tape3.gradient(nu_output, [nu_inter])[0] + EPS
mu_mixed_grad = tape3.gradient(mu_output, [mu_inter])[0] + EPS
nu_grad_penalty = tf.reduce_mean(
tf.square(tf.norm(nu_mixed_grad, axis=-1, keepdims=True)))
mu_grad_penalty = tf.reduce_mean(
tf.square(tf.norm(mu_mixed_grad, axis=-1, keepdims=True)))
nu_mu_loss += self.grad_reg_coeffs[1] * (nu_grad_penalty + mu_grad_penalty)
if self.state_matching:
nu_mu_grads = tape.gradient(nu_mu_loss, self.nu.variables) # update nu only...
else:
nu_mu_grads = tape.gradient(nu_mu_loss, self.nu.variables + self.mu.variables)
cost_grads = tape.gradient(cost_loss, self.cost.variables)
pi_grads = tape.gradient(pi_loss, self.actor.variables)
if self.state_matching:
self.critic_optimizer.apply_gradients(zip(nu_mu_grads, self.nu.variables)) # update nu only...
else:
self.critic_optimizer.apply_gradients(zip(nu_mu_grads, self.nu.variables + self.mu.variables))
self.cost_optimizer.apply_gradients(zip(cost_grads, self.cost.variables))
self.actor_optimizer.apply_gradients(zip(pi_grads, self.actor.variables))
info_dict = {
'cost_loss': cost_loss,
'nu_mu_loss': nu_mu_loss,
'actor_loss': pi_loss,
'expert_nu': tf.reduce_mean(expert_nu),
'imperfect_nu': tf.reduce_mean(imperfect_nu),
'init_nu': tf.reduce_mean(init_nu),
'imperfect_adv': tf.reduce_mean(imperfect_adv_mu_nu),
}
del tape
return info_dict
@tf.function
def step(self, observation, deterministic: bool = True):
observation = tf.convert_to_tensor([observation], dtype=tf.float32)
all_actions, _ = self.actor(observation)
if deterministic:
actions = all_actions[0]
else:
actions = all_actions[1]
return actions
def get_training_state(self):
training_state = {
'cost_params': [(variable.name, variable.value().numpy()) for variable in self.cost.variables],
'nu_params': [(variable.name, variable.value().numpy()) for variable in self.nu.variables],
'mu_params': [(variable.name, variable.value().numpy()) for variable in self.mu.variables],
'actor_params': [(variable.name, variable.value().numpy()) for variable in self.actor.variables],
'cost_optimizer_state': [(variable.name, variable.value().numpy()) for variable in self.cost_optimizer.variables()],
'critic_optimizer_state': [(variable.name, variable.value().numpy()) for variable in self.critic_optimizer.variables()],
'actor_optimizer_state': [(variable.name, variable.value().numpy()) for variable in self.actor_optimizer.variables()],
}
return training_state
def set_training_state(self, training_state):
def _assign_values(variables, params):
if len(variables) != len(params):
import pdb; pdb.set_trace()
assert len(variables) == len(params)
for variable, (name, value) in zip(variables, params):
assert variable.name == name
variable.assign(value)
_assign_values(self.cost.variables, training_state['cost_params'])
_assign_values(self.nu.variables, training_state['nu_params'])
_assign_values(self.mu.variables, training_state['mu_params'])
_assign_values(self.actor.variables, training_state['actor_params'])
_assign_values(self.cost_optimizer.variables(), training_state['cost_optimizer_state'])
_assign_values(self.critic_optimizer.variables(), training_state['critic_optimizer_state'])
_assign_values(self.actor_optimizer.variables(), training_state['actor_optimizer_state'])
def init_dummy(self, state_dim, action_dim):
# dummy train_step (to create optimizer variables)
dummy_state = np.zeros((1, state_dim), dtype=np.float32)
dummy_action = np.zeros((1, action_dim), dtype=np.float32)
self.update(dummy_state, dummy_state, dummy_state, dummy_state, dummy_action, dummy_state)
def save(self, filepath, training_info):
print('Save checkpoint: ', filepath)
training_state = self.get_training_state()
data = {
'training_state': training_state,
'training_info': training_info,
}
with open(filepath + '.tmp', 'wb') as f:
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)
os.rename(filepath + '.tmp', filepath)
print('Saved!')
def load(self, filepath):
print('Load checkpoint:', filepath)
with open(filepath, 'rb') as f:
data = pickle.load(f)
self.set_training_state(data['training_state'])
return data