-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
310 lines (262 loc) · 13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from transformers import AutoTokenizer, AutoModel
from tqdm import tqdm
from accelerate import Accelerator
from accelerate.utils import gather_object
from datasets import Dataset
from tqdm import tqdm
import torch, torch.nn as nn, gc
import time
class EmbeddingModelWrapper():
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
def __init__(self, model_path=DEFAULT_MODEL, bs=8):
self.model, self.tokenizer = self.load_model(model_path)
self.bs = bs
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)
def load_model(self, model_path):
model = AutoModel.from_pretrained(model_path).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path)
return model.eval(), tokenizer
def emb_mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def get_embeddings(self, sentences):
assert isinstance(sentences, list), f"sentences has to be a list but is {type(sentences)}"
embeddings=torch.tensor([], device = "cuda")
batches = [sentences[i:i + self.bs] for i in range(0, len(sentences), self.bs)] if self.bs else [sentences]
for sentences in tqdm(batches):
encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cuda")
with torch.no_grad():
model_output = self.model(**encoded_input)
batch_embeddings = self.emb_mean_pooling(model_output, encoded_input['attention_mask'])
embeddings=torch.cat( (embeddings, batch_embeddings), dim=0 )
return embeddings
def get_similarities(self, x, y=None):
assert isinstance(x, torch.Tensor), f"x has to be a Tensor but is {type(x)}"
if y is None:
y = x
if x.dim()==y.dim()==1:
return self.cos(x[None, :],y[None, :]).cpu().tolist()
x_num, y_num = x.shape[0], y.shape[0]
similarities = torch.zeros(x_num, y_num)
for row in tqdm(range(x_num)):
similarities[row, :]=self.cos(x[row].repeat(y_num,1), y)
return similarities
class ModelPredictionGenerator:
# llama-precise as default, from https://github.com/oobabooga/text-generation-webui/blob/main/presets/LLaMA-Precise.yaml
DEFAULT_GEN_CONFIG={
"temperature": 0.7,
"top_p": 0.1,
"repetition_penalty": 1.18,
"top_k": 40,
"do_sample": True,
# "max_new_tokens": 500,
}
def __init__(self, model, tokenizer):
assert tokenizer.eos_token_id is not None
assert tokenizer.chat_template is not None
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
self.model = model
self.tokenizer = tokenizer
def clear_cache(self):
torch.cuda.empty_cache()
gc.collect()
def messages_to_prompts(self, ds):
""" extract formatted prompts from dataset
dataset has to have column a "messages" or "conversation" =
[
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I am ..?"},
..
]
the method iterates over messages and whenever a message by user is encountered, it uses the tokenizer to format all messages up to and including the current one and adds it to the returned prompts
"""
conversations = ds["messages"] if "messages" in ds.features else ds["conversation"]
prompts = []
for conversation in conversations:
for i, msg in enumerate(conversation):
if msg["role"] == "user":
prompts.append(
dict (
# prompt: format current messages up to the current user message and add a generation prompt
prompt = self.tokenizer.apply_chat_template(
conversation[:i+1],
add_generation_prompt = True,
tokenize = False
),
answer_ref = conversation[i+1]["content"]
)
)
return prompts
def questions_to_prompts(self, questions):
prompts = []
for q in questions:
messages = [dict(role="user", content=q)]
prompts.append(
dict (
prompt = self.tokenizer.apply_chat_template(
messages,
add_generation_prompt = True,
tokenize = False
),
)
)
return prompts
def tokenize_batch(self, batch):
""" tokenizes a list of prompts, returns a padded tensor """
pad_side = self.tokenizer.padding_side
self.tokenizer.padding_side = "left" # left pad for inference
prompts = [ item["prompt"] for item in batch ]
prompts_tok = self.tokenizer(
prompts,
return_tensors = "pt",
padding = 'longest',
truncation = True,
max_length = min(self.tokenizer.model_max_length, 1024),
return_length = True,
pad_to_multiple_of = 8,
add_special_tokens = False
).to(self.model.device)
self.tokenizer.padding_side = pad_side # restore orig. padding side
return prompts_tok
def generate_batch(self, batch_tok, generation_config):
""" generate prediction with batches of tokenized prompts, returns newly generated output only, without prompt """
start_time = time.time()
# Mistral trouble https://github.com/huggingface/peft/issues/1515
# with torch.cuda.amp.autocast(), torch.no_grad():
with torch.no_grad():
outputs_tok = self.model.generate(
input_ids = batch_tok["input_ids"],
attention_mask = batch_tok["attention_mask"],
**generation_config
).to("cpu")
timediff=time.time() - start_time
# cut prompt from output
outputs_tok=[ tok_out[len(tok_in):] for tok_in, tok_out in zip(batch_tok["input_ids"], outputs_tok) ]
outputs=[ self.tokenizer.decode(tok,
spaces_between_special_tokens = False,
skip_special_tokens=True
).strip()
for tok in outputs_tok ]
outputs_tokencount = sum([len(o) for o in outputs_tok])
return outputs, outputs_tokencount // timediff
def input_to_prompts(self, input_data):
assert isinstance(input_data, Dataset) or isinstance(input_data, list)
if isinstance(input_data, Dataset):
prompts = self.messages_to_prompts(input_data)
else:
# list of strings hopefully
prompts = self.questions_to_prompts(input_data)
return prompts
def run(self, input_data, generation_config=None, batch_size=64, max_new_tokens=500):
""" generates prompts from datasets.Dataset or list of strings, generates answers using batched inference """
generation_config = ModelPredictionGenerator.DEFAULT_GEN_CONFIG if generation_config is None else generation_config
generation_config["pad_token_id"] = self.tokenizer.pad_token_id
if max_new_tokens is not None:
generation_config["max_new_tokens"] = max_new_tokens
self.model.eval()
while batch_size > 0:
self.clear_cache()
prompts = self.input_to_prompts( input_data )
batches = [prompts[i:i + batch_size] for i in range(0, len(prompts), batch_size)]
try:
for batch in tqdm(batches):
batch_tok = self.tokenize_batch( batch )
answers, tok_per_second = self.generate_batch( batch_tok, generation_config )
for prompt, answer in zip(batch, answers):
prompt["answer_pred"] = answer
prompt["tok/s"] = tok_per_second
return prompts
except torch.cuda.OutOfMemoryError as e:
batch_size //= 2
print("OOM, retrying with batch size", batch_size)
print("Failed due to OOM, not enough VRAM to generate even with a batch_size of 1")
class ModelPredictionGeneratorDistributed(ModelPredictionGenerator):
def __init__(self, model, tokenizer):
super().__init__(model, tokenizer)
self.accelerator = Accelerator()
def input_to_prompts(self, input_data):
""" distributed prompts to all GPUs, each then works on its own local subset of prompts """
prompts = super().input_to_prompts(input_data)
prompts_idcs = list(range(len(prompts)))
with self.accelerator.split_between_processes(prompts_idcs) as prompts_idcs_local:
prompts_local = [prompts[i] for i in prompts_idcs_local]
return prompts_local
def run(self, **kwargs):
""" process local subset of prompts and gathers the results from all GPUs """
results = super().run(**kwargs)
for i in range(len(results)):
results[i]["GPU"] = self.accelerator.process_index
return gather_object(results)
class SingleChoiceEval:
DEFAULT_TEMPLATE = "{question}\n{choices}\nAnswer:"
LETTERS = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
def __init__(self, dataset, template=DEFAULT_TEMPLATE, key_question="question", key_choices="choices", key_answer="answer"):
self.dataset = dataset
self.template = DEFAULT_TEMPLATE if template is None else template
self.key_question = key_question
self.key_choices = key_choices
self.key_answer = key_answer
self.answer_is_int = type(dataset[0][key_answer]) == int
if type(self.key_choices) == list:
self.num_choices = len(self.key_choices)
else:
self.num_choices = len(dataset[0][self.key_choices])
def get_choices(self, entry):
if type(self.key_choices) == list:
return [entry[k] for k in self.key_choices]
else:
return entry[self.key_choices]
def get_answer(self, entry):
if self.answer_is_int:
# answer is int
return entry[self.key_answer]
elif not self.answer_is_int and entry[self.key_answer] in self.LETTERS:
# answer is a string A-Z
return self.LETTERS.index(entry[self.key_answer])
else:
return None
def format_entry(self, entry, include_answer = True):
template = self.template
choices = [ f"{self.LETTERS[i]}. {choice}" for i, choice in enumerate(self.get_choices(entry)) ]
choices = "\n".join(choices)
text = template.format(choices = choices, question = entry[self.key_question])
if include_answer:
text += f" {self.LETTERS[self.get_answer(entry)]}"
return text
def calc_accuracy(self, model, tokenizer, batch_size = 8, few_shots = None):
choices_tok = [
tokenizer(self.LETTERS[i], add_special_tokens = False)["input_ids"][-1]
for i in range(self.num_choices)
]
if few_shots is not None:
few_shot_prompt = []
for entry in few_shots:
few_shot_prompt.append(self.format_entry(entry, include_answer = True))
few_shot_prompt = "\n\n".join(few_shot_prompt) + "\n\n"
else:
few_shot_prompt = ""
questions = [
few_shot_prompt + self.format_entry(entry, include_answer = False)
for entry in self.dataset
]
# debug
for i in range(3):
print(f"Question #{i}")
print(questions[i], "\n")
batches = [questions[i:i + batch_size] for i in range(0, len(questions), batch_size)]
total, correct = 0, 0
with tqdm(total = len(batches)) as pbar:
for batch_no, batch in enumerate(batches):
pbar.update()
batch_tok = tokenizer(batch, return_tensors = "pt", padding = True).to("cuda")
with torch.no_grad():
batch_logits = model(**batch_tok).logits
# batch_logits.to("cpu")
for i, logits in enumerate(batch_logits):
model_choice = torch.argmax(logits[-1][choices_tok]).item() # -1 is last logit, choices_tok = logits for A, B, C, D
correct += 1 if model_choice == self.get_answer(self.dataset[total]) else 0
total += 1
pbar.set_postfix_str(f"acc={round(correct/total*100,2)}")
return total, correct, correct / total * 100