-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanner_module_v4.py
93 lines (68 loc) · 3.02 KB
/
planner_module_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from bnn import BNN
from cem_optimizer_v2 import CEM_opt
from Propagation import Propagation_net
from collections import deque
import torch
_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
class Planner:
def __init__(self,
stochastic_dyna: BNN,
plan_horizon=20,
num_particles=20,
percent_elite=0.1,
num_sequence_action=200,
env_action_space_shape=4,
env_obs_space_shape=39,
device = 'cuda:0'
):
self.device = device
self.dynamic = stochastic_dyna
self.plan_horizon = plan_horizon
self.num_particles = num_particles
self.num_sequence_action = num_sequence_action
self.env_action_space_shape = env_action_space_shape
self.env_obs_space_shape = env_obs_space_shape
self.planned_actions = deque(maxlen=self.plan_horizon)
self.cem = CEM_opt(num_action_seq=num_sequence_action,
action_seq_len=env_action_space_shape*plan_horizon,
percent_elite=percent_elite)
self.propagation_net = Propagation_net(
num_particles=num_particles,
action_dim=env_action_space_shape,
obs_dim=env_obs_space_shape
)
if self.device == 'cuda:0':
self.propagation_net.move_to_gpu()
def plan_step(self, state, force_replan=False):
if not self.planned_actions or force_replan:
action_sequences = torch.from_numpy(self.cem.population).to(self.device)
state = torch.from_numpy(state).to(self.device)
rewards = torch.zeros(action_sequences.shape[0])
for seq_idx, act_seq in enumerate(action_sequences):
self.propagation_net.sample_from(self.dynamic)
rewards[seq_idx] = self.propagation_net.propagate(state, act_seq).cpu().detach()
self.cem.update(rewards.cpu().numpy())
for act in self.cem.solutions().reshape((-1, self.env_action_space_shape)):
self.planned_actions.append(act)
return self.planned_actions.popleft()
if __name__ == '__main__':
from metaworld.envs import (ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE)
import time
torch.set_default_dtype(torch.float64)
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
class_env = "door-open-v2-goal-observable"
door_open_goal_observable_cls = ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE[class_env]
env = door_open_goal_observable_cls()
action_space_shape = env.action_space.shape[0]
obs_space_shape = env.observation_space.shape[0]
s = env.reset()
dyna = BNN(action_space_shape,
obs_space_shape,
reward_dim=1).to(device)
planner = Planner(stochastic_dyna=dyna)
start = time.time()
print(planner.plan_step(s))
print(f'total: {time.time() - start}')
import pickle
with open('tmp', 'wb') as f:
pickle.dump(planner, f)