forked from cgeyer/llvm-cbg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcbgInstrInfo.td
1328 lines (1149 loc) · 51.5 KB
/
cbgInstrInfo.td
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- cbgInstrInfo.td - Target Description for cbg Target ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the cbg instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "cbgInstrFormats.td"
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
// HasV9 - This predicate is true when the target processor supports V9
// instructions. Note that the machine may be running in 32-bit mode.
//def HasV9 : Predicate<"Subtarget.isV9()">;
// HasNoV9 - This predicate is true when the target doesn't have V9
// instructions. Use of this is just a hack for the isel not having proper
// costs for V8 instructions that are more expensive than their V9 ones.
//def HasNoV9 : Predicate<"!Subtarget.isV9()">;
// HasVIS - This is true when the target processor has VIS extensions.
//def HasVIS : Predicate<"Subtarget.isVIS()">;
// UseDeprecatedInsts - This predicate is true when the target processor is a
// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
// to use when appropriate. In either of these cases, the instruction selector
// will pick deprecated instructions.
//def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
def HasSelCC : Predicate<"Subtarget.hasSelCC()">;
def HasMovCC : Predicate<"Subtarget.hasMovCC()">;
def HasPredBlocksCC : Predicate<"Subtarget.hasPredBlocksCC()">;
def HasPredBlocksReg : Predicate<"Subtarget.hasPredBlocksReg()">;
def HasPredInstrCC : Predicate<"Subtarget.hasPredInstrCC() && !Subtarget.hasPredInstrReg()">;
def HasPredInstrReg : Predicate<"Subtarget.hasPredInstrReg() && !Subtarget.hasPredInstrCC()">;
//def HasNoPredInstr : Predicate<"!Subtarget.hasPredInstrCC() && !Subtarget.hasPredInstrReg()">;
//def HasNoPredInstr : Predicate<"!Subtarget.hasPredInstrCC()">;
def HasHWLoop : Predicate<"Subtarget.hasHWLoop()">;
def HasHWLoops : Predicate<"Subtarget.hasHWLoops()">;
def HasVLIWIfElse : Predicate<"Subtarget.hasVLIWIfElse()">;
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
def simm8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
def LO10 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
MVT::i32);
}]>;
def HI22 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
}]>;
def SETHIimm : PatLeaf<(imm), [{
return (((unsigned)N->getZExtValue() >> 10) << 10) ==
(unsigned)N->getZExtValue();
}], HI22>;
// Addressing modes.
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
// Address operands
def MEMrr : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops IntRegs, IntRegs);
}
def MEMri : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops IntRegs, i32imm);
}
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in
def CCOp : Operand<i32>;
let PrintMethod = "printPRegTFOperand" in
def TFOp : Operand<i32>;
def SDTSPcmpfcc :
SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
def SDTSPbrcc :
SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDTSPselectcc :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
def SDTSPFTOI :
SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
def SDTSPITOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
def call : SDNode<"SPISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
[SDNPHasChain, SDNPOptInGlue]>;
def flushw : SDNode<"SPISD::FLUSHW", SDTNone,
[SDNPHasChain]>;
def getPCX : Operand<i32> {
let PrintMethod = "printGetPCX";
}
// Lemberg predicate operand. Default to -1 = always. Second part is
// condition register.
def pred_cc : PredicateOperand<i32, (ops i32imm, PPRED),
(ops (i32 -1), (i32 zero_reg))> {
let PrintMethod = "printPredCCOperand";
}
//===----------------------------------------------------------------------===//
// CBG Flag Conditions
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class ICC_VAL<int N> : PatLeaf<(i32 N)>;
def ICC_NE : ICC_VAL< 9>; // Not Equal
def ICC_E : ICC_VAL< 1>; // Equal
def ICC_G : ICC_VAL<10>; // Greater
def ICC_LE : ICC_VAL< 2>; // Less or Equal
def ICC_GE : ICC_VAL<11>; // Greater or Equal
def ICC_L : ICC_VAL< 3>; // Less
def ICC_GU : ICC_VAL<12>; // Greater Unsigned
def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
def ICC_POS : ICC_VAL<14>; // Positive
def ICC_NEG : ICC_VAL< 6>; // Negative
def ICC_VC : ICC_VAL<15>; // Overflow Clear
def ICC_VS : ICC_VAL< 7>; // Overflow Set
class FCC_VAL<int N> : PatLeaf<(i32 N)>;
def FCC_U : FCC_VAL<23>; // Unordered
def FCC_G : FCC_VAL<22>; // Greater
def FCC_UG : FCC_VAL<21>; // Unordered or Greater
def FCC_L : FCC_VAL<20>; // Less
def FCC_UL : FCC_VAL<19>; // Unordered or Less
def FCC_LG : FCC_VAL<18>; // Less or Greater
def FCC_NE : FCC_VAL<17>; // Not Equal
def FCC_E : FCC_VAL<25>; // Equal
def FCC_UE : FCC_VAL<24>; // Unordered or Equal
def FCC_GE : FCC_VAL<25>; // Greater or Equal
def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
def FCC_LE : FCC_VAL<27>; // Less or Equal
def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
def FCC_O : FCC_VAL<29>; // Ordered
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
def rr : F3_1<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat(OpcStr, " $b, $c, $dst"),
[(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
def ri : F3_2<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $b, $c, $dst"),
[(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
}
/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
/// pattern.
multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
def rr : F3_1<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat(OpcStr, " $b, $c, $dst"), []>;
def ri : F3_2<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $b, $c, $dst"), []>;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
// Pseudo instructions.
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSP<outs, ins, asmstr, pattern>;
// GETPCX for PIC
let Defs = [O7] in {
def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
}
let Defs = [O6], Uses = [O6] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
";ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
";ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let hasSideEffects = 1, mayStore = 1 in {
// let rd = 0, rs1 = 0, rs2 = 0 in
// def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
// "flushw",
// [(flushw)]>, Requires<[HasV9]>;
let rd = 0, rs1 = 1, simm13 = 3 in
def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
"ta 3",
[(flushw)]>;
}
def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
"unimp $val", []>;
// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
// fpmover pass.
//let Predicates = [HasNoV9] in { // Only emit these in V8 mode.
def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
";FpMOVD $src, $dst", []>;
def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
";FpNEGD $src, $dst",
[(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
";FpABSD $src, $dst",
[(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
//}
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
// instruction selection into a branch sequence. This has to handle all
// permutations of selection between i32/f32/f64 on ICC and FCC.
// Expanded after instruction selection.
let Uses = [ICC], usesCustomInserter = 1 in {
def SELECT_CC_Int_ICC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_ICC PSEUDO!",
[(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
imm:$Cond))]>;
def SELECT_CC_FP_ICC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_ICC PSEUDO!",
[(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
imm:$Cond))]>;
def SELECT_CC_DFP_ICC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_ICC PSEUDO!",
[(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
imm:$Cond))]>;
}
let usesCustomInserter = 1, Uses = [FCC] in {
def SELECT_CC_Int_FCC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_FCC PSEUDO!",
[(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
imm:$Cond))]>;
def SELECT_CC_FP_FCC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_FCC PSEUDO!",
[(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
imm:$Cond))]>;
def SELECT_CC_DFP_FCC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_FCC PSEUDO!",
[(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
imm:$Cond))]>;
}
// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
let rd = O7.Num, rs1 = G0.Num in
def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
"jmp %o7+$val", [(retflag simm13:$val)]>;
let rd = I7.Num, rs1 = G0.Num in
def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
"jmp %i7+$val", []>;
}
// Section B.1 - Load Integer Instructions, p. 90
def LDSBrr : F3_1<3, 0b001001,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
def LDSBri : F3_2<3, 0b001001,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
def LDSHrr : F3_1<3, 0b001010,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
def LDSHri : F3_2<3, 0b001010,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
def LDUBrr : F3_1<3, 0b000001,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
def LDUBri : F3_2<3, 0b000001,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
def LDUHrr : F3_1<3, 0b000010,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
def LDUHri : F3_2<3, 0b000010,
(outs IntRegs:$dst), (ins MEMri:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
def LDrr : F3_1<3, 0b000000,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRrr:$addr))]>;
def LDri : F3_2<3, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRri:$addr))]>;
// Section B.2 - Load Floating-point Instructions, p. 92
def LDFrr : F3_1<3, 0b100000,
(outs FPRegs:$dst), (ins MEMrr:$addr),
"ld [$addr], $dst",
[(set FPRegs:$dst, (load ADDRrr:$addr))]>;
def LDFri : F3_2<3, 0b100000,
(outs FPRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set FPRegs:$dst, (load ADDRri:$addr))]>;
def LDDFrr : F3_1<3, 0b100011,
(outs DFPRegs:$dst), (ins MEMrr:$addr),
"ldd [$addr], $dst",
[(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
def LDDFri : F3_2<3, 0b100011,
(outs DFPRegs:$dst), (ins MEMri:$addr),
"ldd [$addr], $dst",
[(set DFPRegs:$dst, (load ADDRri:$addr))]>;
// Section B.4 - Store Integer Instructions, p. 95
def STBrr : F3_1<3, 0b000101,
(outs), (ins MEMrr:$addr, IntRegs:$src),
"stb $src, [$addr]",
[(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
def STBri : F3_2<3, 0b000101,
(outs), (ins MEMri:$addr, IntRegs:$src),
"stb $src, [$addr]",
[(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
def STHrr : F3_1<3, 0b000110,
(outs), (ins MEMrr:$addr, IntRegs:$src),
"sth $src, [$addr]",
[(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
def STHri : F3_2<3, 0b000110,
(outs), (ins MEMri:$addr, IntRegs:$src),
"sth $src, [$addr]",
[(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
def STrr : F3_1<3, 0b000100,
(outs), (ins MEMrr:$addr, IntRegs:$src),
"st $src, [$addr]",
[(store IntRegs:$src, ADDRrr:$addr)]>;
def STri : F3_2<3, 0b000100,
(outs), (ins MEMri:$addr, IntRegs:$src),
"st $src, [$addr]",
[(store IntRegs:$src, ADDRri:$addr)]>;
// Section B.5 - Store Floating-point Instructions, p. 97
def STFrr : F3_1<3, 0b100100,
(outs), (ins MEMrr:$addr, FPRegs:$src),
"st $src, [$addr]",
[(store FPRegs:$src, ADDRrr:$addr)]>;
def STFri : F3_2<3, 0b100100,
(outs), (ins MEMri:$addr, FPRegs:$src),
"st $src, [$addr]",
[(store FPRegs:$src, ADDRri:$addr)]>;
def STDFrr : F3_1<3, 0b100111,
(outs), (ins MEMrr:$addr, DFPRegs:$src),
"std $src, [$addr]",
[(store DFPRegs:$src, ADDRrr:$addr)]>;
def STDFri : F3_2<3, 0b100111,
(outs), (ins MEMri:$addr, DFPRegs:$src),
"std $src, [$addr]",
[(store DFPRegs:$src, ADDRri:$addr)]>;
// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
(outs IntRegs:$dst), (ins i32imm:$src),
"sethi $src, $dst",
[(set IntRegs:$dst, SETHIimm:$src)]>;
// Section B.10 - NOP Instruction, p. 105
// (It's a special case of SETHI)
let rd = 0, imm22 = 0 in
def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
// Section B.11 - Logical Instructions, p. 106
defm AND : F3_12<"and", 0b000001, and>;
def ANDNrr : F3_1<2, 0b000101,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"andn $b, $c, $dst",
[(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
def ANDNri : F3_2<2, 0b000101,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
"andn $b, $c, $dst", []>;
defm OR : F3_12<"or", 0b000010, or>;
def ORNrr : F3_1<2, 0b000110,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"orn $b, $c, $dst",
[(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
def ORNri : F3_2<2, 0b000110,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
"orn $b, $c, $dst", []>;
defm XOR : F3_12<"xor", 0b000011, xor>;
def XNORrr : F3_1<2, 0b000111,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"xnor $b, $c, $dst",
[(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
def XNORri : F3_2<2, 0b000111,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
"xnor $b, $c, $dst", []>;
// Section B.12 - Shift Instructions, p. 107
defm SLL : F3_12<"sll", 0b100101, shl>;
defm SRL : F3_12<"srl", 0b100110, srl>;
defm SRA : F3_12<"sra", 0b100111, sra>;
// Section B.13 - Add Instructions, p. 108
defm ADD : F3_12<"add", 0b000000, add>;
// "LEA" forms of add (patterns to make tblgen happy)
def LEA_ADDri : F3_2<2, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"add ${addr:arith}, $dst",
[(set IntRegs:$dst, ADDRri:$addr)]>;
let Defs = [ICC] in
defm ADDCC : F3_12<"addcc", 0b010000, addc>;
let Uses = [ICC] in
defm ADDX : F3_12<"addx", 0b001000, adde>;
// Section B.15 - Subtract Instructions, p. 110
defm SUB : F3_12 <"sub" , 0b000100, sub>;
let Uses = [ICC] in
defm SUBX : F3_12 <"subx" , 0b001100, sube>;
let Defs = [ICC] in
defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
let Uses = [ICC], Defs = [ICC] in
def SUBXCCrr: F3_1<2, 0b011100,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"subxcc $b, $c, $dst", []>;
// Section B.18 - Multiply Instructions, p. 113
let Defs = [Y] in {
defm UMUL : F3_12np<"umul", 0b001010>;
defm SMUL : F3_12 <"smul", 0b001011, mul>;
}
// Section B.19 - Divide Instructions, p. 115
let Defs = [Y] in {
defm UDIV : F3_12np<"udiv", 0b001110>;
defm SDIV : F3_12np<"sdiv", 0b001111>;
}
// Section B.20 - SAVE and RESTORE, p. 117
defm SAVE : F3_12np<"save" , 0b111100>;
defm RESTORE : F3_12np<"restore", 0b111101>;
// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
// conditional branch class:
class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
: F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
let isBarrier = 1 in
def BA : BranchSP<0b1000, (ins brtarget:$dst),
"ba $dst",
[(br bb:$dst)]>;
// FIXME: the encoding for the JIT should look at the condition field.
let Uses = [ICC] in
def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
"b$cc $dst",
[(SPbricc bb:$dst, imm:$cc)]>;
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
// floating-point conditional branch class:
class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
: F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
// FIXME: the encoding for the JIT should look at the condition field.
let Uses = [FCC] in
def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
"fb$cc $dst",
[(SPbrfcc bb:$dst, imm:$cc)]>;
// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O6],
hasDelaySlot = 1, isCall = 1,
Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
ICC, FCC, Y] in {
def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
"call $dst", []> {
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
}
// indirect calls
def JMPLrr : F3_1<2, 0b111000,
(outs), (ins MEMrr:$ptr, variable_ops),
"call $ptr",
[(call ADDRrr:$ptr)]>;
def JMPLri : F3_2<2, 0b111000,
(outs), (ins MEMri:$ptr, variable_ops),
"call $ptr",
[(call ADDRri:$ptr)]>;
}
// Section B.28 - Read State Register Instructions
let Uses = [Y] in
def RDY : F3_1<2, 0b101000,
(outs IntRegs:$dst), (ins),
"rd %y, $dst", []>;
// Section B.29 - Write State Register Instructions
let Defs = [Y] in {
def WRYrr : F3_1<2, 0b110000,
(outs), (ins IntRegs:$b, IntRegs:$c),
"wr $b, $c, %y", []>;
def WRYri : F3_2<2, 0b110000,
(outs), (ins IntRegs:$b, i32imm:$c),
"wr $b, $c, %y", []>;
}
// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3<2, 0b110100, 0b011000100,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fitos $src, $dst",
[(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
def FITOD : F3_3<2, 0b110100, 0b011001000,
(outs DFPRegs:$dst), (ins FPRegs:$src),
"fitod $src, $dst",
[(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
// Convert Floating-point to Integer Instructions, p. 142
def FSTOI : F3_3<2, 0b110100, 0b011010001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fstoi $src, $dst",
[(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
def FDTOI : F3_3<2, 0b110100, 0b011010010,
(outs FPRegs:$dst), (ins DFPRegs:$src),
"fdtoi $src, $dst",
[(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
// Convert between Floating-point Formats Instructions, p. 143
def FSTOD : F3_3<2, 0b110100, 0b011001001,
(outs DFPRegs:$dst), (ins FPRegs:$src),
"fstod $src, $dst",
[(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
def FDTOS : F3_3<2, 0b110100, 0b011000110,
(outs FPRegs:$dst), (ins DFPRegs:$src),
"fdtos $src, $dst",
[(set FPRegs:$dst, (fround DFPRegs:$src))]>;
// Floating-point Move Instructions, p. 144
def FMOVS : F3_3<2, 0b110100, 0b000000001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fmovs $src, $dst", []>;
def FNEGS : F3_3<2, 0b110100, 0b000000101,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fnegs $src, $dst",
[(set FPRegs:$dst, (fneg FPRegs:$src))]>;
def FABSS : F3_3<2, 0b110100, 0b000001001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fabss $src, $dst",
[(set FPRegs:$dst, (fabs FPRegs:$src))]>;
// Floating-point Square Root Instructions, p.145
def FSQRTS : F3_3<2, 0b110100, 0b000101001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fsqrts $src, $dst",
[(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
def FSQRTD : F3_3<2, 0b110100, 0b000101010,
(outs DFPRegs:$dst), (ins DFPRegs:$src),
"fsqrtd $src, $dst",
[(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
// Floating-point Add and Subtract Instructions, p. 146
def FADDS : F3_3<2, 0b110100, 0b001000001,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fadds $src1, $src2, $dst",
[(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
def FADDD : F3_3<2, 0b110100, 0b001000010,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"faddd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
def FSUBS : F3_3<2, 0b110100, 0b001000101,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fsubs $src1, $src2, $dst",
[(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
def FSUBD : F3_3<2, 0b110100, 0b001000110,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"fsubd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
// Floating-point Multiply and Divide Instructions, p. 147
def FMULS : F3_3<2, 0b110100, 0b001001001,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fmuls $src1, $src2, $dst",
[(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
def FMULD : F3_3<2, 0b110100, 0b001001010,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"fmuld $src1, $src2, $dst",
[(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
def FSMULD : F3_3<2, 0b110100, 0b001101001,
(outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fsmuld $src1, $src2, $dst",
[(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
(fextend FPRegs:$src2)))]>;
def FDIVS : F3_3<2, 0b110100, 0b001001101,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fdivs $src1, $src2, $dst",
[(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
def FDIVD : F3_3<2, 0b110100, 0b001001110,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"fdivd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
// Floating-point Compare Instructions, p. 148
// Note: the 2nd template arg is different for these guys.
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock. This behavior
// is modelled with a forced noop after the instruction.
let Defs = [FCC] in {
def FCMPS : F3_3<2, 0b110101, 0b001010001,
(outs), (ins FPRegs:$src1, FPRegs:$src2),
"fcmps $src1, $src2\n\tnop",
[(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
def FCMPD : F3_3<2, 0b110101, 0b001010010,
(outs), (ins DFPRegs:$src1, DFPRegs:$src2),
"fcmpd $src1, $src2\n\tnop",
[(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
}
//===----------------------------------------------------------------------===//
// Individual CBG Instructions Extensions
//===----------------------------------------------------------------------===//
// select instructions: support all possibilities
let Predicates = [HasSelCC], Uses = [ICC] in {
def SELcc_ii
: Pseudo<(outs IntRegs:$dst), (ins i32imm:$im1, i32imm:$im2, CCOp:$cc),
"sel[$cc] $im1, $im2, $dst",
[(set IntRegs:$dst,
(SPselecticc simm8:$im1, simm8:$im2, imm:$cc))]>;
def SELcc_ri
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, i32imm:$im2, CCOp:$cc),
"sel[$cc] $src1, $im2, $dst",
[(set IntRegs:$dst,
(SPselecticc IntRegs:$src1, simm11:$im2, imm:$cc))]>;
def SELcc_ir
: Pseudo<(outs IntRegs:$dst), (ins i32imm:$im1, IntRegs:$src2, CCOp:$cc),
"sel[$cc] $im1, $src2, $dst",
[(set IntRegs:$dst,
(SPselecticc simm11:$im1, IntRegs:$src2, imm:$cc))]>;
def SELcc_rr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, CCOp:$cc),
"sel[$cc] $src1, $src2, $dst",
[(set IntRegs:$dst,
(SPselecticc IntRegs:$src1, IntRegs:$src2, imm:$cc))]>;
}
// conditional move instructions
let Predicates = [HasMovCC], Uses = [ICC], Constraints = "$src2 = $dst" in {
def MOVcc_rr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, CCOp:$cc),
"mov[$cc] $src1, $src2",
[(set IntRegs:$dst,
(SPselecticc IntRegs:$src1, IntRegs:$src2, imm:$cc))]>;
}
// hardware loop instruction
let Predicates = [HasHWLoop, HasHWLoops] in {
let isBranch = 1, isTerminator = 1 in
def HWLOOP
: Pseudo<(outs), (ins),
"hwloop start",
[]>;
def HWLOOPinit
: Pseudo<(outs HWLOOPRegs:$dst), (ins brtarget:$src),
"hwloop init $src, $dst",
[]>;
}
// predicated blocks on icc
let Predicates = [HasPredBlocksCC], Uses = [ICC] in {
def PREDBLOCKCC_BEGIN
: Pseudo<(outs), (ins CCOp:$cc),
"predbegin[$cc]",
[]>;
def PREDBLOCKCC_END
: Pseudo<(outs), (ins),
"predend",
[]>;
}
// predicated blocks on pregs
let Predicates = [HasPredBlocksReg] in {
def PREDBLOCKREG_BEGIN_T
: Pseudo<(outs), (ins PREDRegs:$pred),
"predbegin[$pred][t]",
[]>;
def PREDBLOCKREG_BEGIN_F
: Pseudo<(outs), (ins PREDRegs:$pred),
"predbegin[$pred][f]",
[]>;
def PREDBLOCKREG_END
: Pseudo<(outs), (ins),
"predend",
[]>;
}
let Uses = [ICC] in def PREDREGSETCC
: Pseudo<(outs PREDRegs:$pred), (ins CCOp:$cc),
"predset[$cc] $pred",
[]>;
def PREDREGSET
: Pseudo<(outs PREDRegs:$pred), (ins),
"predset $pred",
[]>;
def PREDREGCLEAR
: Pseudo<(outs PREDRegs:$pred), (ins),
"predclear $pred",
[]>;
// predicated instruction templates
multiclass Pseudo_pcc<string OpcStr, SDNode OpNode> {
def rr : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, pred_cc:$cc),
!strconcat(OpcStr, "[$cc] $src1, $src2, $dst"),
[(set IntRegs:$dst, (OpNode IntRegs:$src1, IntRegs:$src2))]>;
def ri : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, i32imm:$src2, pred_cc:$cc),
!strconcat(OpcStr, "[$cc] $src1, $src2, $dst"),
[(set IntRegs:$dst, (OpNode IntRegs:$src1, simm13:$src2))]>;
}
multiclass Pseudo_pcc_np<string OpcStr> {
def rr : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, pred_cc:$cc),
!strconcat(OpcStr, "[$cc] $src1, $src2, $dst"),
[]>;
def ri : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, i32imm:$src2, pred_cc:$cc),
!strconcat(OpcStr, "[$cc] $src1, $src2, $dst"),
[]>;
}
// predicated instructions with condition codes
let Predicates = [HasPredInstrCC], Uses = [ICC] in {
// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
def RETL_pcc
: Pseudo<(outs), (ins i32imm:$val, pred_cc:$cc),
"jmp[$cc] %o7+$val",
[(retflag simm13:$val)]>;
def RET_pcc
: Pseudo<(outs), (ins i32imm:$val, pred_cc:$cc),
"jmp[$cc] %i7+$val",
[]>;
}
// Section B.1 - Load Integer Instructions, p. 90
def LDSB_pccrr
: Pseudo<(outs IntRegs:$dst), (ins MEMrr:$addr, pred_cc:$cc),
"ldsb[$cc] [$addr], $dst",
[(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
def LDSB_pccri
: Pseudo<(outs IntRegs:$dst), (ins MEMri:$addr, pred_cc:$cc),
"ldsb[$cc] [$addr], $dst",
[(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
def LDSH_pccrr
: Pseudo<(outs IntRegs:$dst), (ins MEMrr:$addr, pred_cc:$cc),
"ldsh[$cc] [$addr], $dst",
[(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
def LDSH_pccri
: Pseudo<(outs IntRegs:$dst), (ins MEMri:$addr, pred_cc:$cc),
"ldsh[$cc] [$addr], $dst",
[(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
def LDUB_pccrr
: Pseudo<(outs IntRegs:$dst), (ins MEMrr:$addr, pred_cc:$cc),
"ldub[$cc] [$addr], $dst",
[(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
def LDUB_pccri
: Pseudo<(outs IntRegs:$dst), (ins MEMri:$addr, pred_cc:$cc),
"ldub[$cc] [$addr], $dst",
[(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
def LDUH_pccrr
: Pseudo<(outs IntRegs:$dst), (ins MEMrr:$addr, pred_cc:$cc),
"lduh[$cc] [$addr], $dst",
[(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
def LDUH_pccri
: Pseudo<(outs IntRegs:$dst), (ins MEMri:$addr, pred_cc:$cc),
"lduh[$cc] [$addr], $dst",
[(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
def LD_pccrr
: Pseudo<(outs IntRegs:$dst), (ins MEMrr:$addr, pred_cc:$cc),
"ld[$cc] [$addr], $dst",
[(set IntRegs:$dst, (load ADDRrr:$addr))]>;
def LD_pccri
: Pseudo<(outs IntRegs:$dst), (ins MEMri:$addr, pred_cc:$cc),
"ld[$cc] [$addr], $dst",
[(set IntRegs:$dst, (load ADDRri:$addr))]>;
// Section B.4 - Store Integer Instructions, p. 95
def STB_pccrr
: Pseudo<(outs), (ins MEMrr:$addr, IntRegs:$src, pred_cc:$cc),
"stb[$cc] $src, [$addr]",
[(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
def STB_pccri
: Pseudo<(outs), (ins MEMri:$addr, IntRegs:$src, pred_cc:$cc),
"stb[$cc] $src, [$addr]",
[(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
def STH_pccrr
: Pseudo<(outs), (ins MEMrr:$addr, IntRegs:$src, pred_cc:$cc),
"sth[$cc] $src, [$addr]",
[(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
def STH_pccri
: Pseudo<(outs), (ins MEMri:$addr, IntRegs:$src, pred_cc:$cc),
"sth[$cc] $src, [$addr]",
[(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
def ST_pccrr
: Pseudo<(outs), (ins MEMrr:$addr, IntRegs:$src, pred_cc:$cc),
"st[$cc] $src, [$addr]",
[(store IntRegs:$src, ADDRrr:$addr)]>;
def ST_pccri
: Pseudo<(outs), (ins MEMri:$addr, IntRegs:$src, pred_cc:$cc),
"st[$cc] $src, [$addr]",
[(store IntRegs:$src, ADDRri:$addr)]>;
// Section B.9 - SETHI Instruction, p. 104
def SETHIi_pcc
: Pseudo<(outs IntRegs:$dst), (ins i32imm:$src, pred_cc:$cc),
"sethi[$cc] $src, $dst",
[(set IntRegs:$dst, SETHIimm:$src)]>;
// Section B.11 - Logical Instructions, p. 106
defm AND_pcc : Pseudo_pcc<"and", and>;
def ANDN_pccrr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, pred_cc:$cc),
"andn[$cc] $src1, $src2, $dst",
[(set IntRegs:$dst, (and IntRegs:$src1, (not IntRegs:$src2)))]>;
def ANDN_pccri
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, i32imm:$src2, pred_cc:$cc),
"andn[$cc] $src1, $src2, $dst",
[]>;
defm OR_pcc : Pseudo_pcc<"or", or>;
def ORN_pccrr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, pred_cc:$cc),
"orn[$cc] $src1, $src2, $dst",
[(set IntRegs:$dst, (or IntRegs:$src1, (not IntRegs:$src2)))]>;
def ORN_pccri
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, i32imm:$src2, pred_cc:$cc),
"orn[$cc] $src1, $src2, $dst",
[]>;
defm XOR_pcc : Pseudo_pcc<"xor", xor>;
def XNOR_pccrr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, pred_cc:$cc),
"xnor[$cc] $src1, $src2, $dst",
[(set IntRegs:$dst, (not (xor IntRegs:$src1, IntRegs:$src2)))]>;
def XNOR_pccri
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, i32imm:$src2, pred_cc:$cc),
"xnor[$cc] $src1, $src2, $dst",
[]>;
// Section B.12 - Shift Instructions, p. 107
defm SLL_pcc : Pseudo_pcc<"sll", shl>;
defm SRL_pcc : Pseudo_pcc<"srl", srl>;
defm SRA_pcc : Pseudo_pcc<"sra", sra>;
// Section B.13 - Add Instructions, p. 108
defm ADD_pcc : Pseudo_pcc<"add", add>;
defm ADDX_pcc : Pseudo_pcc<"addx", adde>;
// "LEA" forms of add (patterns to make tblgen happy)
def LEA_ADD_pccri
: Pseudo<(outs IntRegs:$dst), (ins MEMri:$addr, pred_cc:$cc),
"add[$cc] ${addr:arith}, $dst",
[(set IntRegs:$dst, ADDRri:$addr)]>;
// Section B.15 - Subtract Instructions, p. 110
defm SUB_pcc : Pseudo_pcc<"sub", sub>;
defm SUBX_pcc : Pseudo_pcc<"subx", sube>;
// Section B.18 - Multiply Instructions, p. 113
/*let Defs = [Y] in {
defm UMUL_pcc : Pseudo_pcc_np<"umul">;
defm SMUL_pcc : Pseudo_pcc<"smul", mul>;
}*/
let Defs = [Y] in {
def UMUL_pccrr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, SpecialRegs:$Y, pred_cc:$cc),
"umul[$cc] $src1, $src2, $dst",
[]>;
def UMUL_pccri
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, i32imm:$src2, SpecialRegs:$Y, pred_cc:$cc),
"umul[$cc] $src1, $src2, $dst",
[]>;
def SMUL_pccrr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, SpecialRegs:$Y, pred_cc:$cc),
"smul[$cc] $src1, $src2, $dst",
[]>;