-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
797 lines (587 loc) · 37.6 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import statistics as st
import numpy as np
import pandas as pd
import geopandas as gpd
import glob
import os
import csv
import math
from datetime import datetime
POPULATION = 10298252
RT_PERIOD = 7 # infections activity period considered for RT
RT_IGNORE = 3 # ignore early days
PREV_PERIOD = RT_PERIOD # we are using the same infectious period for prevalence estimation
PREV_IGNORE = RT_IGNORE # ignore early days
PREV_IMMUNITY_DAYS = 180 # assuming 6 months for the prevalence calculation
CFR_DELTA = 10 # average time to die for CFR calculation
CFR_IGNORE = 30 # ignore early days
INC_PERIOD = 14 # period for incidence calculations
INC_DIVIDER = POPULATION / 10000 # to get incidence per 100k people
MAV_PERIOD = 7 # period for moving average calculations
DATA_DIR = '/home/deployment/coviz-data/'
# we tolerate isolated one-day or two day holes and make an average of adjacent days
def get_patched_data( data, delta, fill_initial=False ):
# skip to the first non None or Nan element
k = 0
for value in data:
if data[k] is None or math.isnan(data[k]):
if fill_initial:
data[k] = 0
k = k + 1
else:
break
length = len(data)
for j in range(k, len(data)):
if math.isnan(data[j]) and j + delta < length:
data[j] = ( ( data[j - delta] + data[j + delta] ) / 2 )
return data
def get_smooth_list( data, window_size ):
series = pd.Series(data)
windows = series.rolling(window_size)
# the first window_size-1 results are nan, but that's OK
return windows.mean().tolist()
# obtains the new entries from the acumulated entries
def get_differential_series( data ):
diff_data = [ 0 ]
for i, element in enumerate(data):
if i >= 1:
diff_data.append( element - data[i - 1])
return diff_data
def get_incidence_T( data, period, factor ):
# the first T days have None
inc_data = list(np.full( period - 1, None))
for i, element in enumerate(data):
if i >= period - 1:
interval = data[(i - period + 1):i]
value = sum(interval) / factor
inc_data.append(value)
return inc_data
# go back period days in time to calculate the cases
def get_cfr( deaths, new, period, ignore_interval ):
# the first T days have None value because the numbers are not accurate
# then we have the user defined interval to ignore and extra rewind days
# used for averaging the new cases
fwd = 4
rew = 3
cfr_data = list(np.full( period + ignore_interval + rew, None))
for i, element in enumerate(deaths):
if i > period + ignore_interval + rew - 1:
# we smooth the new cases over 7 days around the date
new_value = st.mean(new[i - period - rew:i - period + fwd])
if new_value > 0:
ratio = element / new_value
else:
ratio = 0
cfr_data.append( ratio * 100 )
# let's smooth now
result = get_smooth_list(cfr_data, MAV_PERIOD)
return result
def get_rt( new, period, ignore_interval ):
r_data = list(np.full( period + ignore_interval, None))
for i, element in enumerate(new):
if i > period + ignore_interval - 1:
slice = new[i - period:i]
total = sum(slice)
r_data.append( new[i] / (total / period) )
# let's smooth now
result = get_smooth_list(r_data, MAV_PERIOD)
return result
# obtain the minimum prevalence, using the detected cases
def get_min_prevalence( new, period, ignore_interval, population ):
r_data = list(np.full( period + ignore_interval, None))
for i, element in enumerate(new):
if i > period + ignore_interval - 1:
slice = new[i - period + 1:i + 1] # period days, including today
total = sum(slice)
min_prevalence = ( total / population) * 100
# print('min', min_prevalence)
r_data.append( min_prevalence )
# let's smooth now
result = get_smooth_list(r_data, MAV_PERIOD)
return result
# get the worst case scenario for prevalence
def get_max_prevalence(new, min_prevalence, tests, positivity, population):
r_data = []
for i, element in enumerate(min_prevalence):
left_index = max(0, i - PREV_IMMUNITY_DAYS)
previous_positives = sum( new[ left_index:i] )
# the population that was tested this day or was previously infected is not part of the potentially infected set
available_fraction = ( 1 - tests[i] / population - previous_positives / population )
# worst case scenario positivity % of them could be positive
extra_prevalence = available_fraction * positivity[i]
max_prevalence = min_prevalence[i] + extra_prevalence
r_data.append(max_prevalence)
# print('max', max_prevalence)
# let's smooth now
result = get_smooth_list(r_data, MAV_PERIOD)
return result
def get_positivity( tests, new, period, ignore_interval ):
pos_data = list(np.full( period + ignore_interval, None))
for i, element in enumerate(tests):
# print(i, element)
if i > period + ignore_interval - 1:
num = new[i]
den = tests[i - period]
if num and den:
pos_data.append( (num / den) * 100 )
else:
pos_data.append(None)
# let's smooth now
result = get_smooth_list(pos_data, MAV_PERIOD)
return result
# corrects old overall deaths with the trend due to ageing population
def get_normalized_2020_deaths( death_array, daily_extra ):
normalized_death_array = []
for value in death_array:
corrected_value = value + daily_extra
normalized_death_array.append(corrected_value)
return normalized_death_array
# this function is situation specific for the sake of code readability
# returns the average number of deaths in the "same" day of 2015-2019 and the corresponding standard deviation
def get_avg_deaths_2015_2019(total_deaths, span, smoothen=False, correct=False):
avg_data = []
sd_data = []
deaths_2015_in = total_deaths[ 0:365 ] # normal year
deaths_2016_in = total_deaths[ 365:730 + 1] # leap year
deaths_2017_in = total_deaths[ 731:1096 ] # normal year
deaths_2018_in = total_deaths[ 1096:1461 ] # normal year
deaths_2019_in = total_deaths[ 1461:1826 ] # normal year
# when correct is True we are normalizing historical deaths to that equivalent 2020 deaths
if correct:
# Fit for overall yearly mortality by Carlos Antunes (x=1 for 2009)
# y = 102621 + 966.99x
# The yearly extra of 966.99 can be converted to a daily extra, 966.99 / 365 = 2.64929
daily_extra = 2.64929
deaths_2015 = get_normalized_2020_deaths( deaths_2015_in, daily_extra * 5 )
deaths_2016 = get_normalized_2020_deaths( deaths_2016_in, daily_extra * 4 )
deaths_2017 = get_normalized_2020_deaths( deaths_2017_in, daily_extra * 3 )
deaths_2018 = get_normalized_2020_deaths( deaths_2018_in, daily_extra * 2 )
deaths_2019 = get_normalized_2020_deaths( deaths_2019_in, daily_extra * 1 )
else:
deaths_2015 = deaths_2015_in
deaths_2016 = deaths_2016_in
deaths_2017 = deaths_2017_in
deaths_2018 = deaths_2018_in
deaths_2019 = deaths_2019_in
# should be 365 366 365 365 365 1826
# print ( len (deaths_2015), len(deaths_2016), len(deaths_2017), len(deaths_2018), len(deaths_2019), len(total_deaths) )
# should be 407 366 475 414 371
# print ( deaths_2015[0], deaths_2016[0], deaths_2017[0], deaths_2018[0], deaths_2019[0] )
# should be 323 465 390 357 345
# print ( deaths_2015[364], deaths_2016[364], deaths_2017[364], deaths_2018[364], deaths_2019[364] )
first_day_index = 55 # 26th of February
for d in range(0, span):
# idx varies between 0 and 364 (365 values)
# there could be some long term drift resulting from this code, but only over many years
idx = d + first_day_index - 365 * int( (d + first_day_index) / 365 )
# because the period spans more than one year we need additional correction converting 2020 to present year
if correct:
delta = daily_extra * int(d / 365)
# print('delta is', delta)
else:
delta = 0
avg = ( deaths_2015[idx] + deaths_2016[idx] + deaths_2017[idx] + deaths_2018[idx] + deaths_2019[idx] + 5 * delta ) / 5
var = ( (deaths_2015[idx] + delta - avg) ** 2 + (deaths_2016[idx] + delta - avg) ** 2 + (deaths_2017[idx] + delta - avg) ** 2 + (deaths_2018[idx] + delta - avg) ** 2 + (deaths_2019[idx] + delta - avg) ** 2 ) / 5
sd = math.sqrt(var)
# print(d, idx, avg, sd)
avg_data.append(avg)
sd_data.append(sd)
if smoothen:
return get_smooth_list( avg_data, MAV_PERIOD ), sd_data
else:
return avg_data, sd_data
def get_avg_deaths( total_deaths, span, years ):
avg_data = []
sd_data = []
data_length = len(total_deaths)
for d in range(0, span):
daily_sum = 0
daily_var_sum = 0
# we go back 2 years so this is always considering 2015-2019 (pre-Covid)
for i in range(2, years + 2):
base_index = data_length - 1 - span
# we never let the day index go beyound 365
day_index = d - 365 * int(d / 365)
index = base_index - i * 365 + day_index
daily_sum = daily_sum + total_deaths[ index ]
daily_average = daily_sum / years
avg_data.append( daily_average )
for i in range(2, years + 2):
base_index = data_length - 1 - span
# we never let the day index go beyound 365
day_index = d - 365 * int(d / 365)
index = base_index - i * 365 + day_index
daily_var_sum = daily_var_sum + (daily_average - total_deaths[ index ]) ** 2
daily_sd = math.sqrt( daily_var_sum / years )
sd_data.append( daily_sd )
# print(daily_average, daily_sd)
return avg_data, sd_data
def get_deaths_band( avg_deaths, sd_deaths ):
d_inf_data = []
d_sup_data = []
for i, element in enumerate(avg_deaths):
d_inf = element - sd_deaths[i]
d_sup = element + sd_deaths[i]
d_inf_data.append(d_inf)
d_sup_data.append(d_sup)
return d_inf_data, d_sup_data
def get_dates( date_strings ):
dates = []
for d in date_strings:
dates.append(datetime.strptime(d, '%d-%m-%Y').date())
return dates
def get_stratified_data( data, base_str, smoothen, period, maxlen):
data_0_9_f = data[ base_str + '_0_9_f' ]
data_0_9_m = data[ base_str + '_0_9_m' ]
data_10_19_f = data[ base_str + '_10_19_f' ]
data_10_19_m = data[ base_str + '_10_19_m' ]
data_20_29_f = data[ base_str + '_20_29_f' ]
data_20_29_m = data[ base_str + '_20_29_m' ]
data_30_39_f = data[ base_str + '_30_39_f' ]
data_30_39_m = data[ base_str + '_30_39_m' ]
data_40_49_f = data[ base_str + '_40_49_f' ]
data_40_49_m = data[ base_str + '_40_49_m' ]
data_50_59_f = data[ base_str + '_50_59_f' ]
data_50_59_m = data[ base_str + '_50_59_m' ]
data_60_69_f = data[ base_str + '_60_69_f' ]
data_60_69_m = data[ base_str + '_60_69_m' ]
data_70_79_f = data[ base_str + '_70_79_f' ]
data_70_79_m = data[ base_str + '_70_79_m' ]
data_80_plus_f = data[ base_str + '_80_plus_f']
data_80_plus_m = data[ base_str + '_80_plus_m']
# we are patching some report holes in the cumulative series using the average value for adjacent days
data_0_9_total = get_differential_series( get_patched_data( (data_0_9_f + data_0_9_m ).tolist(), 1, True ) )[0:maxlen]
data_10_19_total = get_differential_series( get_patched_data( (data_10_19_f + data_10_19_m ).tolist(), 1, True ) )[0:maxlen]
data_20_29_total = get_differential_series( get_patched_data( (data_20_29_f + data_20_29_m ).tolist(), 1, True ) )[0:maxlen]
data_30_39_total = get_differential_series( get_patched_data( (data_30_39_f + data_30_39_m ).tolist(), 1, True ) )[0:maxlen]
data_40_49_total = get_differential_series( get_patched_data( (data_40_49_f + data_40_49_m ).tolist(), 1, True ) )[0:maxlen]
data_50_59_total = get_differential_series( get_patched_data( (data_50_59_f + data_50_59_m ).tolist(), 1, True ) )[0:maxlen]
data_60_69_total = get_differential_series( get_patched_data( (data_60_69_f + data_60_69_m ).tolist(), 1, True ) )[0:maxlen]
data_70_79_total = get_differential_series( get_patched_data( (data_70_79_f + data_70_79_m ).tolist(), 1, True ) )[0:maxlen]
data_80_plus_total = get_differential_series( get_patched_data( (data_80_plus_f + data_80_plus_m ).tolist(), 1, True ) )[0:maxlen]
tmp_list = [ data_0_9_total, data_10_19_total, data_20_29_total, data_30_39_total, data_40_49_total, data_50_59_total, data_60_69_total, data_70_79_total, data_80_plus_total ]
data_list = []
if smoothen:
for l in tmp_list:
data_list.append( get_smooth_list(l, period) )
else:
data_list = tmp_list
return data_list
def get_stratified_mortality_info( mort_data, days ):
# find the current stratified overall deaths
# this is a multi year series starting in 01/01/2009
# we need to get the lastest -days and smoothen for the plots
# the non-smoothed version will be used for the statistics
total_deaths_0_1 = mort_data[ 'grupoetario_1ano' ].tolist()[-days:]
total_deaths_1_4 = mort_data[ 'grupoetario_1a4anos' ].tolist()[-days:]
total_deaths_5_14 = mort_data[ 'grupoetario_5a14anos' ].tolist()[-days:]
total_deaths_15_24 = mort_data[ 'grupoetario_15a24anos' ].tolist()[-days:]
total_deaths_25_34 = mort_data[ 'grupoetario_25a34anos' ].tolist()[-days:]
total_deaths_35_44 = mort_data[ 'grupoetario_35a44anos' ].tolist()[-days:]
total_deaths_45_56 = mort_data[ 'grupoetario_45a54anos' ].tolist()[-days:]
total_deaths_55_64 = mort_data[ 'grupoetario_55a64anos' ].tolist()[-days:]
total_deaths_65_74 = mort_data[ 'grupoetario_65a74anos' ].tolist()[-days:]
total_deaths_75_84 = mort_data[ 'grupoetario_75a84anos' ].tolist()[-days:]
total_deaths_85_plus = mort_data[ 'grupoetario_85+anos' ].tolist()[-days:]
total_deaths_all_ages = mort_data[ 'geral_pais' ].tolist()[-days:]
s_total_deaths_0_1 = get_smooth_list( total_deaths_0_1, MAV_PERIOD )
s_total_deaths_1_4 = get_smooth_list( total_deaths_1_4, MAV_PERIOD )
s_total_deaths_5_14 = get_smooth_list( total_deaths_5_14, MAV_PERIOD )
s_total_deaths_15_24 = get_smooth_list( total_deaths_15_24, MAV_PERIOD )
s_total_deaths_25_34 = get_smooth_list( total_deaths_25_34, MAV_PERIOD )
s_total_deaths_35_44 = get_smooth_list( total_deaths_35_44, MAV_PERIOD )
s_total_deaths_45_56 = get_smooth_list( total_deaths_45_56, MAV_PERIOD )
s_total_deaths_55_64 = get_smooth_list( total_deaths_55_64, MAV_PERIOD )
s_total_deaths_65_74 = get_smooth_list( total_deaths_65_74, MAV_PERIOD )
s_total_deaths_75_84 = get_smooth_list( total_deaths_75_84, MAV_PERIOD )
s_total_deaths_85_plus = get_smooth_list( total_deaths_85_plus, MAV_PERIOD )
s_total_deaths_all_ages = get_smooth_list( total_deaths_all_ages, MAV_PERIOD )
# now let's find the precovid overal deaths
# note: 2016 is a leap year
idx1 = mort_data.index[ mort_data['Data'] == '01-01-2015' ][0]
idx2 = mort_data.index[ mort_data['Data'] == '31-12-2019' ][0] + 1
total_deaths_precovid_0_1 = mort_data.iloc[ idx1:idx2 ]['grupoetario_1ano' ].to_list()
total_deaths_precovid_1_4 = mort_data.iloc[ idx1:idx2 ]['grupoetario_1a4anos' ].to_list()
total_deaths_precovid_5_14 = mort_data.iloc[ idx1:idx2 ]['grupoetario_5a14anos' ].to_list()
total_deaths_precovid_15_24 = mort_data.iloc[ idx1:idx2 ]['grupoetario_15a24anos'].to_list()
total_deaths_precovid_25_34 = mort_data.iloc[ idx1:idx2 ]['grupoetario_25a34anos'].to_list()
total_deaths_precovid_35_44 = mort_data.iloc[ idx1:idx2 ]['grupoetario_35a44anos'].to_list()
total_deaths_precovid_45_54 = mort_data.iloc[ idx1:idx2 ]['grupoetario_45a54anos'].to_list()
total_deaths_precovid_55_64 = mort_data.iloc[ idx1:idx2 ]['grupoetario_55a64anos'].to_list()
total_deaths_precovid_65_74 = mort_data.iloc[ idx1:idx2 ]['grupoetario_65a74anos'].to_list()
total_deaths_precovid_75_84 = mort_data.iloc[ idx1:idx2 ]['grupoetario_75a84anos'].to_list()
total_deaths_precovid_85_plus = mort_data.iloc[ idx1:idx2 ]['grupoetario_85+anos' ].to_list()
total_deaths_precovid_all_ages = mort_data.iloc[ idx1:idx2 ]['geral_pais' ].to_list()
# we are not smoothing the curve here
avg_deaths_precovid_0_1, sd_deaths_precovid_0_1 = get_avg_deaths_2015_2019(total_deaths_precovid_0_1, days, False)
avg_deaths_precovid_1_4, sd_deaths_precovid_1_4 = get_avg_deaths_2015_2019(total_deaths_precovid_1_4, days, False)
avg_deaths_precovid_5_14, sd_deaths_precovid_5_14 = get_avg_deaths_2015_2019(total_deaths_precovid_5_14, days, False)
avg_deaths_precovid_15_24, sd_deaths_precovid_15_24 = get_avg_deaths_2015_2019(total_deaths_precovid_15_24, days, False)
avg_deaths_precovid_25_34, sd_deaths_precovid_25_34 = get_avg_deaths_2015_2019(total_deaths_precovid_25_34, days, False)
avg_deaths_precovid_35_44, sd_deaths_precovid_35_44 = get_avg_deaths_2015_2019(total_deaths_precovid_35_44, days, False)
avg_deaths_precovid_45_54, sd_deaths_precovid_45_54 = get_avg_deaths_2015_2019(total_deaths_precovid_45_54, days, False)
avg_deaths_precovid_55_64, sd_deaths_precovid_55_64 = get_avg_deaths_2015_2019(total_deaths_precovid_55_64, days, False)
avg_deaths_precovid_65_74, sd_deaths_precovid_65_74 = get_avg_deaths_2015_2019(total_deaths_precovid_65_74, days, False)
avg_deaths_precovid_75_84, sd_deaths_precovid_75_84 = get_avg_deaths_2015_2019(total_deaths_precovid_75_84, days, False)
avg_deaths_precovid_85_plus, sd_deaths_precovid_85_plus = get_avg_deaths_2015_2019(total_deaths_precovid_85_plus, days, False)
avg_deaths_precovid_all_ages, sd_deaths_precovid_all_ages = get_avg_deaths_2015_2019(total_deaths_precovid_all_ages, days, False)
# population ageing corrected reference values
avg_deaths_precovid_all_ages_c, sd_deaths_precovid_all_ages_c = get_avg_deaths_2015_2019(total_deaths_precovid_all_ages, days, False, True)
avg_deaths_inf_0_1, avg_deaths_sup_0_1 = get_deaths_band( avg_deaths_precovid_0_1, sd_deaths_precovid_0_1 )
avg_deaths_inf_1_4, avg_deaths_sup_1_4 = get_deaths_band( avg_deaths_precovid_1_4, sd_deaths_precovid_1_4 )
avg_deaths_inf_5_14, avg_deaths_sup_5_14 = get_deaths_band( avg_deaths_precovid_5_14, sd_deaths_precovid_5_14 )
avg_deaths_inf_15_24, avg_deaths_sup_15_24 = get_deaths_band( avg_deaths_precovid_15_24, sd_deaths_precovid_15_24 )
avg_deaths_inf_25_34, avg_deaths_sup_25_34 = get_deaths_band( avg_deaths_precovid_25_34, sd_deaths_precovid_25_34 )
avg_deaths_inf_35_44, avg_deaths_sup_35_44 = get_deaths_band( avg_deaths_precovid_35_44, sd_deaths_precovid_35_44 )
avg_deaths_inf_45_54, avg_deaths_sup_45_54 = get_deaths_band( avg_deaths_precovid_45_54, sd_deaths_precovid_45_54 )
avg_deaths_inf_55_64, avg_deaths_sup_55_64 = get_deaths_band( avg_deaths_precovid_55_64, sd_deaths_precovid_55_64 )
avg_deaths_inf_65_74, avg_deaths_sup_65_74 = get_deaths_band( avg_deaths_precovid_65_74, sd_deaths_precovid_65_74 )
avg_deaths_inf_75_84, avg_deaths_sup_75_84 = get_deaths_band( avg_deaths_precovid_75_84, sd_deaths_precovid_75_84 )
avg_deaths_inf_85_plus, avg_deaths_sup_85_plus = get_deaths_band( avg_deaths_precovid_85_plus, sd_deaths_precovid_85_plus )
avg_deaths_inf_all_ages, avg_deaths_sup_all_ages = get_deaths_band( avg_deaths_precovid_all_ages, sd_deaths_precovid_all_ages )
avg_deaths_inf_all_ages_c, avg_deaths_sup_all_ages_c = get_deaths_band( avg_deaths_precovid_all_ages_c, sd_deaths_precovid_all_ages_c )
# now let's create all the smooth versions
s_avg_deaths_precovid_0_1 = get_smooth_list( avg_deaths_precovid_0_1, MAV_PERIOD )
s_avg_deaths_precovid_1_4 = get_smooth_list( avg_deaths_precovid_1_4, MAV_PERIOD )
s_avg_deaths_precovid_5_14 = get_smooth_list( avg_deaths_precovid_5_14, MAV_PERIOD )
s_avg_deaths_precovid_15_24 = get_smooth_list( avg_deaths_precovid_15_24, MAV_PERIOD )
s_avg_deaths_precovid_25_34 = get_smooth_list( avg_deaths_precovid_25_34, MAV_PERIOD )
s_avg_deaths_precovid_35_44 = get_smooth_list( avg_deaths_precovid_35_44, MAV_PERIOD )
s_avg_deaths_precovid_45_54 = get_smooth_list( avg_deaths_precovid_45_54, MAV_PERIOD )
s_avg_deaths_precovid_55_64 = get_smooth_list( avg_deaths_precovid_55_64, MAV_PERIOD )
s_avg_deaths_precovid_65_74 = get_smooth_list( avg_deaths_precovid_65_74, MAV_PERIOD )
s_avg_deaths_precovid_75_84 = get_smooth_list( avg_deaths_precovid_75_84, MAV_PERIOD )
s_avg_deaths_precovid_85_plus = get_smooth_list( avg_deaths_precovid_85_plus, MAV_PERIOD )
s_avg_deaths_precovid_all_ages = get_smooth_list( avg_deaths_precovid_all_ages, MAV_PERIOD )
s_avg_deaths_precovid_all_ages_c = get_smooth_list( avg_deaths_precovid_all_ages_c, MAV_PERIOD )
s_avg_deaths_inf_0_1 = get_smooth_list( avg_deaths_inf_0_1, MAV_PERIOD )
s_avg_deaths_inf_1_4 = get_smooth_list( avg_deaths_inf_1_4, MAV_PERIOD )
s_avg_deaths_inf_5_14 = get_smooth_list( avg_deaths_inf_5_14, MAV_PERIOD )
s_avg_deaths_inf_15_24 = get_smooth_list( avg_deaths_inf_15_24, MAV_PERIOD )
s_avg_deaths_inf_25_34 = get_smooth_list( avg_deaths_inf_25_34, MAV_PERIOD )
s_avg_deaths_inf_35_44 = get_smooth_list( avg_deaths_inf_35_44, MAV_PERIOD )
s_avg_deaths_inf_45_54 = get_smooth_list( avg_deaths_inf_45_54, MAV_PERIOD )
s_avg_deaths_inf_55_64 = get_smooth_list( avg_deaths_inf_55_64, MAV_PERIOD )
s_avg_deaths_inf_65_74 = get_smooth_list( avg_deaths_inf_65_74, MAV_PERIOD )
s_avg_deaths_inf_75_84 = get_smooth_list( avg_deaths_inf_75_84, MAV_PERIOD )
s_avg_deaths_inf_85_plus = get_smooth_list( avg_deaths_inf_85_plus, MAV_PERIOD )
s_avg_deaths_inf_all_ages = get_smooth_list( avg_deaths_inf_all_ages, MAV_PERIOD )
s_avg_deaths_inf_all_ages_c = get_smooth_list( avg_deaths_inf_all_ages_c, MAV_PERIOD )
s_avg_deaths_sup_0_1 = get_smooth_list( avg_deaths_sup_0_1, MAV_PERIOD )
s_avg_deaths_sup_1_4 = get_smooth_list( avg_deaths_sup_1_4, MAV_PERIOD )
s_avg_deaths_sup_5_14 = get_smooth_list( avg_deaths_sup_5_14, MAV_PERIOD )
s_avg_deaths_sup_15_24 = get_smooth_list( avg_deaths_sup_15_24, MAV_PERIOD )
s_avg_deaths_sup_25_34 = get_smooth_list( avg_deaths_sup_25_34, MAV_PERIOD )
s_avg_deaths_sup_35_44 = get_smooth_list( avg_deaths_sup_35_44, MAV_PERIOD )
s_avg_deaths_sup_45_54 = get_smooth_list( avg_deaths_sup_45_54, MAV_PERIOD )
s_avg_deaths_sup_55_64 = get_smooth_list( avg_deaths_sup_55_64, MAV_PERIOD )
s_avg_deaths_sup_65_74 = get_smooth_list( avg_deaths_sup_65_74, MAV_PERIOD )
s_avg_deaths_sup_75_84 = get_smooth_list( avg_deaths_sup_75_84, MAV_PERIOD )
s_avg_deaths_sup_85_plus = get_smooth_list( avg_deaths_sup_85_plus, MAV_PERIOD )
s_avg_deaths_sup_all_ages = get_smooth_list( avg_deaths_sup_all_ages, MAV_PERIOD )
s_avg_deaths_sup_all_ages_c = get_smooth_list( avg_deaths_sup_all_ages_c, MAV_PERIOD )
# create the arrays
# we have a duplication in the last two values to avoid complicating the handling code on main.py
total_deaths = [ total_deaths_0_1, total_deaths_1_4, total_deaths_5_14, total_deaths_15_24, total_deaths_25_34, total_deaths_35_44,
total_deaths_45_56, total_deaths_55_64, total_deaths_65_74, total_deaths_75_84, total_deaths_85_plus, total_deaths_all_ages, total_deaths_all_ages ]
# same as above
s_total_deaths = [ s_total_deaths_0_1, s_total_deaths_1_4, s_total_deaths_5_14, s_total_deaths_15_24, s_total_deaths_25_34, s_total_deaths_35_44,
s_total_deaths_45_56, s_total_deaths_55_64, s_total_deaths_65_74, s_total_deaths_75_84, s_total_deaths_85_plus, s_total_deaths_all_ages, s_total_deaths_all_ages ]
# on these arrays we have the extra item with the corrected reference values
avg_deaths = [ avg_deaths_precovid_0_1, avg_deaths_precovid_1_4, avg_deaths_precovid_5_14, avg_deaths_precovid_15_24, avg_deaths_precovid_25_34, avg_deaths_precovid_35_44,
avg_deaths_precovid_45_54, avg_deaths_precovid_55_64, avg_deaths_precovid_65_74, avg_deaths_precovid_75_84, avg_deaths_precovid_85_plus, avg_deaths_precovid_all_ages, avg_deaths_precovid_all_ages_c ]
avg_deaths_inf = [ avg_deaths_inf_0_1, avg_deaths_inf_1_4, avg_deaths_inf_5_14, avg_deaths_inf_15_24, avg_deaths_inf_25_34, avg_deaths_inf_35_44,
avg_deaths_inf_45_54, avg_deaths_inf_55_64, avg_deaths_inf_65_74, avg_deaths_inf_75_84, avg_deaths_inf_85_plus, avg_deaths_inf_all_ages, avg_deaths_inf_all_ages_c ]
avg_deaths_sup = [ avg_deaths_sup_0_1, avg_deaths_sup_1_4, avg_deaths_sup_5_14, avg_deaths_sup_15_24, avg_deaths_sup_25_34, avg_deaths_sup_35_44,
avg_deaths_sup_45_54, avg_deaths_sup_55_64, avg_deaths_sup_65_74, avg_deaths_sup_75_84, avg_deaths_sup_85_plus, avg_deaths_sup_all_ages, avg_deaths_sup_all_ages_c ]
s_avg_deaths = [ s_avg_deaths_precovid_0_1, s_avg_deaths_precovid_1_4, s_avg_deaths_precovid_5_14, s_avg_deaths_precovid_15_24, s_avg_deaths_precovid_25_34, s_avg_deaths_precovid_35_44,
s_avg_deaths_precovid_45_54, s_avg_deaths_precovid_55_64, s_avg_deaths_precovid_65_74, s_avg_deaths_precovid_75_84, s_avg_deaths_precovid_85_plus, s_avg_deaths_precovid_all_ages, s_avg_deaths_precovid_all_ages_c ]
s_avg_deaths_inf = [ s_avg_deaths_inf_0_1, s_avg_deaths_inf_1_4, s_avg_deaths_inf_5_14, s_avg_deaths_inf_15_24, s_avg_deaths_inf_25_34, s_avg_deaths_inf_35_44,
s_avg_deaths_inf_45_54, s_avg_deaths_inf_55_64, s_avg_deaths_inf_65_74, s_avg_deaths_inf_75_84, s_avg_deaths_inf_85_plus, s_avg_deaths_inf_all_ages, s_avg_deaths_inf_all_ages_c ]
s_avg_deaths_sup = [ s_avg_deaths_sup_0_1, s_avg_deaths_sup_1_4, s_avg_deaths_sup_5_14, s_avg_deaths_sup_15_24, s_avg_deaths_sup_25_34, s_avg_deaths_sup_35_44,
s_avg_deaths_sup_45_54, s_avg_deaths_sup_55_64, s_avg_deaths_sup_65_74, s_avg_deaths_sup_75_84, s_avg_deaths_sup_85_plus, s_avg_deaths_sup_all_ages, s_avg_deaths_sup_all_ages_c ]
strat_mort_info = [ total_deaths, s_total_deaths, avg_deaths, avg_deaths_inf, avg_deaths_sup, s_avg_deaths, s_avg_deaths_inf, s_avg_deaths_sup ]
return strat_mort_info
def get_stratified_cfr( data, CFR_DELTA, CFR_IGNORE, maxlen ):
strat_cv19_new = get_stratified_data( data, 'confirmados', False, -1, maxlen )
strat_cv19_deaths = get_stratified_data( data, 'obitos', False, -1, maxlen )
strat_cfr = []
for j in range(0, len(strat_cv19_new) ):
my_cfr = get_cfr(strat_cv19_deaths[j], strat_cv19_new[j], CFR_DELTA, CFR_IGNORE)
my_len = len(strat_cv19_new[j])
# helper variable to set the last part to None instead of zero
empty_list = np.full( my_len - maxlen , None)
# UPDATE: this line stopped being necessary since we introduced the maxline arg to this function
# important: this assignement conserves the list size
# my_cfr[maxlen:-1] = np.full( my_len - maxlen - 1 , None)
strat_cfr.append( my_cfr )
return strat_cfr
def pad_data( data, target_size, element, left=True ):
delta = target_size - len(data)
# if we don't have enough data we pad with "element"
if delta >= 0:
for j in range( target_size - len(data) ):
if left:
data.insert(0, element)
else:
data.append(element)
# in case we had more data than wanted we trim it
return data[:target_size]
def get_days_until_patch( data ):
idx = np.where(~np.isnan(data))[-1][-1]
# the number of days is the index plus 1
return idx + 1
def get_data():
# get the latest of each file type
main_file = DATA_DIR + 'merged/data.csv'
tests_file = DATA_DIR + 'merged/amostras.csv'
mort_file = DATA_DIR + 'dssg/mortalidade.csv'
vacc_file = DATA_DIR + 'dssg/vacinas.csv'
vacc_cfr_file = DATA_DIR + 'custom/CFR-vs-status.csv'
vacc_chr_file = DATA_DIR + 'custom/CHR-vs-status.csv'
main_data = pd.read_csv(main_file)
tests_data = pd.read_csv(tests_file)
mort_data = pd.read_csv(mort_file)
vacc_data = pd.read_csv(vacc_file)
vacc_cfr_data = pd.read_csv(vacc_cfr_file)
vacc_chr_data = pd.read_csv(vacc_chr_file)
new = main_data['confirmados_novos'].tolist()
# converting the dd-mm-yyyy strings to date objects
# starts at 26th of February of 2020
dates = get_dates(main_data['data'].tolist())
# but for some data series it ends at 13/03/2022
diff_days = (datetime.strptime('13-03-2022', '%d-%m-%Y').date() - datetime.strptime('26-02-2020', '%d-%m-%Y').date()).days
dates2 = dates[0:diff_days + 1]
# the amount of Covid data days that we have
days = len(new)
days2 = len(dates2) # for the shorter series
# print(dates[0], dates[-1], days)
# print(dates2[0], dates2[-1], days2)
hosp = main_data['internados'].tolist()
hosp_uci = main_data['internados_uci'].tolist()
cv19_deaths = get_differential_series(main_data['obitos'].tolist())
incidence = get_incidence_T(new, INC_PERIOD, INC_DIVIDER)
cfr = get_cfr(cv19_deaths, new, CFR_DELTA, CFR_IGNORE)
rt = get_rt(new, RT_PERIOD, RT_IGNORE)
# padding the pcr_tests series because it has 2 days of delay it seems - checked on 20/05/2021
# the padding function also trims it in case it has more data then the other series - checked on 08/10/2021
total_tests = pad_data( tests_data['amostras_novas'].tolist(), days, 0, False)
positivity = get_positivity( total_tests, new, 2, 0)
# data starts at 27-12-2020
tmp_vacc_part = vacc_data['pessoas_inoculadas'].interpolate(limit_area='inside').tolist()
tmp_vacc_full = vacc_data['pessoas_vacinadas_completamente'].interpolate(limit_area='inside').tolist()
tmp_vacc_boost = vacc_data['pessoas_reforço'].interpolate(limit_area='inside').tolist()
# diffing from the main data that starts at 26-02-2020
diff_days = (datetime.strptime('27-12-2020', '%d-%m-%Y').date() - datetime.strptime('26-02-2020', '%d-%m-%Y').date()).days
# fixed left padding
padding = np.array([np.nan] * diff_days).tolist()
tmp_vacc_part = padding + tmp_vacc_part
tmp_vacc_full = padding + tmp_vacc_full
tmp_vacc_boost = padding + tmp_vacc_boost
# adaptative right side padding
vacc_part = pad_data(tmp_vacc_part, days2, np.nan, False)
vacc_full = pad_data(tmp_vacc_full, days2, np.nan, False)
vacc_boost = pad_data(tmp_vacc_boost, days2, np.nan, False)
# print(len(vacc_boost), len(cfr))
# this is a multi year series starting in 01/01/2009
total_deaths = mort_data['geral_pais'].tolist()
# note: 2016 is a leap year
idx1 = mort_data.index[ mort_data['Data'] == '01-01-2015' ][0]
idx2 = mort_data.index[ mort_data['Data'] == '31-12-2019' ][0] + 1
total_deaths_precovid = mort_data.iloc[ idx1:idx2 ]['geral_pais'].to_list()
# print (idx1, idx2)
# print(total_deaths_precovid)
# print(len(total_deaths_precovid))
# we get the average and standard deviation per day
avg_deaths, sd_deaths = get_avg_deaths_2015_2019(total_deaths_precovid, days)
avg_deaths_inf, avg_deaths_sup = get_deaths_band( avg_deaths, sd_deaths )
# smooth data before presenting
s_new = get_smooth_list(new, MAV_PERIOD)
s_cv19_deaths = get_smooth_list(cv19_deaths, MAV_PERIOD)
s_total_deaths = get_smooth_list(total_deaths[-days:], MAV_PERIOD)
s_avg_deaths = get_smooth_list(avg_deaths, MAV_PERIOD)
s_avg_deaths_inf = get_smooth_list(avg_deaths_inf, MAV_PERIOD)
s_avg_deaths_sup = get_smooth_list(avg_deaths_sup, MAV_PERIOD)
s_total_tests = get_smooth_list(total_tests, MAV_PERIOD)
# these lists are already smoothed
s_strat_cv19_new = get_stratified_data( main_data, 'confirmados', True, MAV_PERIOD, days2 )
s_strat_cv19_deaths = get_stratified_data( main_data, 'obitos', True, MAV_PERIOD, days2 )
# unfortunately the stratified data was interrupted
strat_cfr = get_stratified_cfr( main_data, CFR_DELTA, CFR_IGNORE, days2 )
# get age stratified mortality information
# average precovid deaths and respective standard deviation bands, plus smoothed current overall deaths
# this is an age stratified generalization of what we have already done with the total for all ages
strat_mortality_info = get_stratified_mortality_info( mort_data, days )
s_min_prevalence = get_min_prevalence(new, PREV_PERIOD, PREV_IGNORE, POPULATION)
s_max_prevalence = get_max_prevalence(new, s_min_prevalence, total_tests, positivity, POPULATION)
s_avg_prevalence = 0.5 * ( np.array(s_min_prevalence) + np.array(s_max_prevalence) )
# processed data
processed_data = [ s_new, hosp, hosp_uci, s_cv19_deaths, incidence, cfr, rt, positivity, s_total_deaths, s_avg_deaths,
avg_deaths_inf, avg_deaths_sup, s_strat_cv19_new, s_strat_cv19_deaths, strat_cfr, vacc_part, vacc_full,
vacc_boost, strat_mortality_info, s_min_prevalence, s_max_prevalence, s_avg_prevalence, vacc_cfr_data,
vacc_chr_data, s_total_tests ]
# raw data for stats
raw_data = [ new, cv19_deaths, total_deaths[-days:], avg_deaths ]
return dates, dates2, processed_data, raw_data
def get_counties_incidence(row, incidence_data, idx):
# NAME_2 is the county name (concelho)
name = row['NAME_2']
ucase_name = name.upper()
# handle the only mismatches between the incidence data and the shape file
if ucase_name == 'PRAIA DA VITÓRIA':
ucase_name = 'VILA DA PRAIA DA VITÓRIA'
if ucase_name == 'PONTE DE SÔR':
ucase_name = 'PONTE DE SOR'
try:
# select column and then row
incidence = incidence_data[ucase_name][idx]
except:
print('incidence not found for ' + ucase_name)
incidence = 0
# print(ucase_name, incidence)
return incidence
def get_incidence_index( incidence_data, requested_date ):
# filter by the requested date, using a nearest match
# get a series with the differences between the requested date and the existing dates
delta_series = abs( pd.to_datetime(incidence_data['data'], format='%d-%m-%Y') - pd.to_datetime(requested_date))
# print(delta_series)
# find the index of the minimum differnce
idx = delta_series.idxmin()
print('index for date', requested_date, 'is', idx, 'and corresponding date is', pd.to_datetime(incidence_data['data'][idx]))
return idx
# get county incidence list at a certain date
def get_data_counties( requested_date=None ):
incidence_file = DATA_DIR + 'dssg/data_concelhos_incidencia.csv'
incidence_data = pd.read_csv(incidence_file)
# retrieves strings from the file
str_map_date_i = incidence_data['data'].tolist()[0]
str_map_date_f = incidence_data['data'].tolist()[-1]
# converts to proper dates
map_date_i = datetime.strptime(str_map_date_i, '%d-%m-%Y').date()
map_date_f = datetime.strptime(str_map_date_f, '%d-%m-%Y').date()
# the default is the latest available date
if requested_date is None:
requested_date = map_date_f
# the shapefile comes from:
# https://dados.gov.pt/s/resources/concelhos-de-portugal/20181112-193505/concelhos-shapefile.zip
# we mention the .shp file but the companion files from the zip must be in the same directory
poly_file = '/home/deployment/data/shape/concelhos.shp'
# a GeoDataFrame object is a pandas.DataFrame that has a column with geometry
# https://geopandas.org/docs/reference/api/geopandas.GeoDataFrame.html
poly_data = gpd.read_file(poly_file)
pd.set_option('display.max_rows', None)
# based on this work
# https://github.com/jfexbrayat/bokeh-covid/blob/main/bokeh_covid.ipynb
# let's determine the best index on the incidence vs time table for a requested date
# that is because data_concelhos_incidencia-*.csv seems to be updated only each 7 days
# but the pattern is not clear and we must make sure we don't crash
idx = get_incidence_index( incidence_data, requested_date )
# let's add a column with the incidence data for a certain moment in time
poly_data['incidence'] = poly_data.apply(get_counties_incidence, incidence_data=incidence_data, idx=idx, axis=1)
# remove the islands
poly_data = poly_data.loc[ poly_data['NAME_1'] != 'Azores' ]
poly_data = poly_data.loc[ poly_data['NAME_1'] != 'Madeira' ]
# print(poly_data)
# we return a GeoDataFrame with the counties from the main land, to which an incidence column has been added
# we also return the first and last dates available from the incidence time series
return poly_data, map_date_i, map_date_f