-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
1047 lines (736 loc) · 44.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import math
import numpy as np
import pandas as pd
import geopandas as gpd
import pandas_bokeh
from pandas_bokeh.geoplot import convert_geoDataFrame_to_patches
from functools import partial
from datetime import datetime
from bokeh.io import curdoc
from bokeh.layouts import layout, gridplot, column, row
from bokeh.models.widgets import Tabs, Panel
from bokeh.models import Button, Toggle, CategoricalColorMapper, ColumnDataSource, TableColumn, DataTable, HoverTool, Label, SingleIntervalTicker, Slider, Spacer, GlyphRenderer, DatetimeTickFormatter, DateRangeSlider, DataRange1d, Range1d, DateSlider, LinearColorMapper, Div, CustomJS, Band, HTMLTemplateFormatter, StringFormatter, BoxAnnotation, Scatter
from bokeh.palettes import Inferno256, Magma256, Turbo256, Plasma256, Cividis256, Viridis256, OrRd
from bokeh.plotting import figure
from bokeh.events import DocumentReady
from .data import get_data, get_data_counties
# import configuration variables
from config import *
# import functions
from util import *
window_size_data_source = ColumnDataSource( data={ 'width' : [0] , 'height': [0] } )
# by default we assume the layout is horizontal
current_horizontal = True
# functions
# note: callbacks and layout related functions act on global variables
### callbacks ####
# for the toggle button action
def update_state(new):
cline2.visible = clines_switch.active
cline3.visible = clines_switch.active
cline4.visible = clines_switch.active
# for the visible stats
def update_stats(attr, old, new):
date_i_cmp = date_slider1.value_as_date[0]
date_f_cmp = date_slider1.value_as_date[1]
# we need to know the list positions to sum the numbers
idx1 = (date_i_cmp - data_dates[0]).days
idx2 = (date_f_cmp - data_dates[0]).days
# use nansum because there may be NaNs due to delayed / missing data
sum_new = make_html_integer(np.nansum(np.array( raw_data_new[idx1:idx2 + 1] )))
sum_cv19_deaths = make_html_integer(np.nansum(np.array( raw_data_cv19_deaths[idx1:idx2 + 1] )))
sum_total_deaths_pre = np.nansum(np.array( raw_data_total_deaths[idx1:idx2 + 1] ))
sum_avg_deaths_pre = int(round( np.nansum(np.array( raw_data_avg_deaths[idx1:idx2 + 1] ) ), 0))
excess_deaths = sum_total_deaths_pre - sum_avg_deaths_pre
excess_deaths_pct = round( (excess_deaths / sum_avg_deaths_pre) * 100, 1)
sum_avg_deaths = make_html_integer( sum_avg_deaths_pre )
sum_total_deaths = make_html_integer( sum_total_deaths_pre )
# this is what is necessary to update an existing table
# local vars
stats_data = pd.DataFrame( { 'updated': str(data_dates[-1]), 'sum_new': [sum_new], 'sum_cv19_deaths': [sum_cv19_deaths], 'sum_total_deaths': [sum_total_deaths], 'sum_avg_deaths': [sum_avg_deaths], 'excess_deaths': [excess_deaths], 'excess_deaths_pct': [excess_deaths_pct] } )
stats_source = ColumnDataSource( stats_data )
# pre-existing global var
stats_table.source = stats_source
# makes the legends appear / disappear as necessary
def update_legends(attr, old, new, section):
if section == "1":
date_i_cmp = date_slider1.value_as_date[0]
date_f_cmp = date_slider1.value_as_date[1]
nr_days = days
else:
date_i_cmp = date_slider2.value_as_date[0]
date_f_cmp = date_slider2.value_as_date[1]
nr_days = days2
# we need to know the list positions to sum the numbers
idx1 = (date_i_cmp - data_dates[0]).days
idx2 = (date_f_cmp - data_dates[0]).days
# the -7 is because we start 7 days later on the dates, due to the moving average :-)
if idx2 - idx1 < nr_days - 7:
my_visibility = False
my_click_policy = 'none'
my_location = (0, -1000)
else:
my_visibility = True
my_click_policy = 'mute'
my_location = 'top_left'
# act on plots that have dynamic legend
if section == "1":
plot3.legend.visible = my_visibility
plot7.legend.visible = my_visibility
else:
# in this case toggling the visibility is not enough, because the legend,
# if invisible but present, prevents hovering the lines
plot10.legend.location = my_location
plot11.legend.location = my_location
# this is because even when the legend is invisible it is clickable
# and therefore lines could be muted / unmuted by accident
# this shhold not be necessary because we already moved id away above
# but it is here for reference
plot10.legend.click_policy = my_click_policy
plot11.legend.click_policy = my_click_policy
# for the data range
def update_plot_range(attr, old, new, section):
if section == '1':
my_slider = date_slider1
my_plot_data = plot_data_s1
else:
my_slider = date_slider2
my_plot_data = plot_data_s2
date_i = my_slider.value[0]
date_f = my_slider.value[1]
if date_i == date_f:
return
date_i_cmp = my_slider.value_as_date[0]
date_f_cmp = my_slider.value_as_date[1]
for d in my_plot_data:
# we get the plot from the tuple
p = d[0]
# for some reason we need to pad the range to get an exact day match with the slider
p.x_range.start = date_i - pd.Timedelta(days=1).total_seconds() * 1000
# this one is just for the line not to be attached to the limit of the plot
p.x_range.end = date_f + pd.Timedelta(days=2).total_seconds() * 1000
# we pass the data source from the tuple
y_min, y_max = get_y_limits(d[1], date_i_cmp, date_f_cmp)
if math.isnan(y_min) or math.isnan(y_max):
print('not rescaling due to having received nan')
continue
# print (y_min, y_max)
# adjust range
range_delta = y_max * PLOT_RANGE_FACTOR
p.y_range.end = y_max + range_delta
p.y_range.start = y_min - range_delta
# for the map
def update_map(attr, old, new):
date = date_slider_map.value_as_date
print('map updating', date)
print('process data counties - START')
new_data_incidence_counties, xxx, yyy = get_data_counties( date )
print('process data counties - DONE')
# index in aux_index has repeated values, as multipoly rows in the original data were converted into several rows
j = 0
inc_list = np.array( [] )
for index in aux_index:
# print (index, j)
inc_list = np.append(inc_list, new_data_incidence_counties['incidence'][index])
j = j + 1
# we update the data source directly on the column that holds the incidence info
# this column, name Colormap, is added inside plot_bokeh
plot_map_s1.data['Colormap'] = inc_list
# we refresh the tooltips using the Colormap column as the list
plot_map.hover.tooltips = [ ('County', '@NAME_2'), ('Incidence', '@Colormap'), ]
# for the overall mortality plot
def update_mortality_plot_range(attr, old, new):
pre_box.right = date_slider4.value[0]
post_box.left = date_slider4.value[1]
def update_mortality_stats(attr, old, new):
date_i_cmp = date_slider4.value_as_date[0]
date_f_cmp = date_slider4.value_as_date[1]
# we need to know the list positions to sum the numbers
idx1 = (date_i_cmp - data_dates[0]).days
idx2 = (date_f_cmp - data_dates[0]).days
column_total = []
column_avg = []
column_exc = []
column_pct = []
# we use the non smoothed version for the stats
for total_strat_group, avg_strat_group, avg_strat_group_inf, avg_strat_group_sup in zip(total_deaths_strat, avg_deaths_strat, avg_deaths_strat_inf, avg_deaths_strat_sup):
# use nansum because there may be NaNs due to delayed / missing data
sum_total_deaths = round(np.nansum(np.array( total_strat_group[idx1:idx2 + 1] )), 0)
column_total.append(sum_total_deaths)
sum_avg_deaths = round(np.nansum(np.array( avg_strat_group[idx1:idx2 + 1] )), 0)
sum_avg_deaths_inf = round(np.nansum(np.array( avg_strat_group_inf[idx1:idx2 + 1] )), 0)
sum_avg_deaths_sup = round(np.nansum(np.array( avg_strat_group_sup[idx1:idx2 + 1] )), 0)
sum_avg_deaths_inf_pct = round(( ( sum_avg_deaths_inf - sum_avg_deaths ) / sum_avg_deaths ) * 100, 1)
sum_avg_deaths_sup_pct = round(( ( sum_avg_deaths_sup - sum_avg_deaths ) / sum_avg_deaths ) * 100, 1)
# the inf and sup values are symmetrical, so using only one of them simplifies the notation
str_avg_deaths = '{:<6} ± {}'.format(int(sum_avg_deaths), sum_avg_deaths_sup_pct)
# we have to do some funky padding because the normal python format can not insert
# and the HTML cells do away with normal spaces
str_tmp = str(int(sum_avg_deaths))
nspaces = 6 - len(str_tmp)
str_spaces = ' ' * nspaces
str_avg_deaths = str_tmp + str_spaces + ' ± ' + str(sum_avg_deaths_sup_pct) + '%'
column_avg.append(str_avg_deaths)
excess_deaths = sum_total_deaths - sum_avg_deaths
# to compensate for the minus sign
str_pad = ''
if excess_deaths > 0:
str_pad = ' '
column_exc.append( str_pad + str(int(excess_deaths)) )
column_pct.append( str_pad + str(round( (excess_deaths / sum_avg_deaths) * 100, 1)) + '%' )
# this is what is necessary to update an existing table
# local vars
dummy_column = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 , 1]
index_column = [ '<1', '1-4', '5-14', '15-24', '25-34', '35-44', '45-54', '55-64', '65-74', '75-84', '>85', 'all ages', 'all ages*' ]
stats_data = pd.DataFrame( { 'age_group': index_column, 'sum_total_deaths': column_total, 'sum_avg_deaths': column_avg, 'excess_deaths': column_exc, 'excess_deaths_pct': column_pct } )
stats_source = ColumnDataSource( stats_data )
# pre-existing global var
mortality_stats_table.source = stats_source
# update table caption
mortality_notes.text = 'Data for period of ' + str(date_i_cmp) + ' to ' + str(date_f_cmp)
# and for the correlation plot
data_cv19_deaths_subset = get_clean_data(corr_data_cv19_deaths[idx1:idx2 + 1])
data_exc_deaths_subset = get_clean_data( corr_data_exc_deaths[idx1:idx2 + 1])
slope, intercept, r_value = get_correlation_data(data_cv19_deaths_subset, data_exc_deaths_subset)
# update the global variables
source_plot_correlation.data = dict(x=data_cv19_deaths_subset, y=data_exc_deaths_subset)
correlation_coefficient = r_value
regression_line.gradient = slope
regression_line.y_intercept = intercept
label_str = make_correlation_str(slope, intercept, r_value)
regression_label.text = label_str
# after document load
def on_document_ready(evt):
# here we change some property on the fake_toggle widget
print('document is ready, refreshing fake widget')
# this forces a change on the fake slider, which then invokes the JS callback
fake_slider.value = ( date_i, date_i )
fake_slider.value = ( date_i, date_f )
# this callbacks takes action on the server side upon dimensions change
def on_dimensions_change(attr, old, new):
width = new['width'][0]
height = new['height'][0]
global current_horizontal
print('current dimensions', width, height)
if width >= height and width > MIN_HORIZONTAL_WIDTH:
print('orientation is horizontal')
horizontal = True
else:
print('orientation is vertical')
horizontal = False
if (current_horizontal != horizontal):
print('redoing layouts')
curdoc().clear()
# adjust the widgets depending on the current orientation
adjust_widgets_to_layout(horizontal)
curdoc().add_root(controls1)
if horizontal:
curdoc().add_root(layout1_h)
else:
curdoc().add_root(layout1_v)
curdoc().add_root(controls2)
if horizontal:
curdoc().add_root(layout2_h)
curdoc().add_root(layout3_h)
curdoc().add_root(layout4_h)
curdoc().add_root(layout5_h)
curdoc().add_root(layout6_h)
curdoc().add_root(layout7)
else:
curdoc().add_root(layout2_v)
curdoc().add_root(layout3_v)
curdoc().add_root(layout4_v)
curdoc().add_root(layout5_v)
curdoc().add_root(layout6_v)
curdoc().add_root(layout7)
# store the horizontalness state
current_horizontal = horizontal
dimensions_callback = CustomJS( args=dict(ds=window_size_data_source), code="""
var width, height;
var new_data = {};
height = window.innerHeight || document.documentElement.clientHeight || document.body.clientHeight;
width = window.innerWidth || document.documentElement.clientWidth || document.body.clientWidth;
console.log("Javascript callback", height, width);
// needs to be a list, otherwise we have a server side error
new_data['height'] = [height];
new_data['width' ] = [width];
ds.data = new_data;
ds.change.emit();
""")
#### end of callbacks ####
### layouts ####
def make_layouts( ):
control_spacer = Spacer(width=10, height=10, width_policy='auto', height_policy='fixed')
# use this line for debugging with the fake slider
controls1 = row(date_slider1, control_spacer, fake_slider, clines_switch, name="section1_controls" )
fake_slider.visible = False
# first
grid_h = gridplot([
[ plot1, plot3, plot5, plot8 ],
[ plot2, plot4, plot6, plot7 ] ],
plot_width=PLOT_WIDTH, plot_height=PLOT_HEIGHT, toolbar_location=None, sizing_mode='scale_width')
grid_v = gridplot([
[ plot5, plot3 ],
[ plot1, plot8 ],
[ plot6, plot7 ],
[ plot2, plot4 ] ],
plot_width=PLOT_WIDTH, plot_height=PLOT_HEIGHT, toolbar_location=None, sizing_mode='scale_width')
# second
controls2 = row(date_slider2, name="section2_controls" )
grid2_h = gridplot([
[plot9, plot11],
[plot10, plot12] ],
plot_width=PLOT_WIDTH, plot_height=PLOT_HEIGHT2, toolbar_location=None, sizing_mode='scale_width')
grid2_v = gridplot([
[plot9 ],
[plot10],
[plot11],
[plot12] ],
plot_width=PLOT_WIDTH, plot_height=PLOT_HEIGHT2, toolbar_location=None, sizing_mode='scale_width')
# third
notes = Div(text=TEXT_NOTES, width=TEXT_WIDTH)
# now the layout
slider_spacer = Spacer(width=30, height=50, width_policy='auto', height_policy='fixed')
layout1_h = layout( column(stats_table, grid_h), name='section1', sizing_mode='scale_width')
layout2_h = layout(grid2_h, name='section2', sizing_mode='scale_width')
column_section3_map = column(plot_map)
column_section3_others = column( [plot_incidence, row( [slider_spacer, date_slider_map] ), row( [ slider_spacer, notes] ) ] )
row_section3 = row( column_section3_map , column_section3_others )
layout3_h = layout( row_section3, name='section3')
layout1_v = layout(column(stats_table, grid_v), name='section1', sizing_mode='scale_width')
layout2_v = layout(grid2_v, name='section2', sizing_mode='scale_width')
# we don't need the notes text on the vertical layout
column_section3_map = column( [plot_map, row( [slider_spacer, date_slider_map] ), plot_incidence ] )
layout3_v = layout( column_section3_map, name='section3')
# fourth
# adds left side spacing for handles lining up with the annotation box
slider_spacer4 = Spacer(width=40, height=100, width_policy='auto', height_policy='fixed')
mortality_plots_column = column(mort_explorer_tabset, row(slider_spacer4, date_slider4))
in_between_spacer = Spacer(width=20, height=50, width_policy='auto', height_policy='fixed')
in_between_spacer_v = Spacer(width=20, height=10, width_policy='auto', height_policy='fixed')
# the mortality columns come from main
layout4_h = layout(row( mortality_plots_column, in_between_spacer, mort_explorer_tabset2), name='section4', sizing_mode='scale_width')
layout4_v = layout(column(mortality_plots_column, mort_explorer_tabset2), name='section4', sizing_mode='scale_width')
# fifth
prev_spacer = Spacer(width=20, height=5, width_policy='auto', height_policy='fixed')
prev_spacer2 = Spacer(width=20, height=60, width_policy='auto', height_policy='fixed')
layout5_h = layout(row(plot_prevalence, prev_spacer, column(prev_spacer, prevalence_notes, prev_spacer2) ), name='section5', sizing_mode='scale_width')
layout5_v = layout(column(plot_prevalence), name='section5', sizing_mode='scale_width')
# sixth
vacc_risk_spacer = Spacer(width=20, height=5, width_policy='auto', height_policy='fixed')
vacc_risk_spacer2 = Spacer(width=20, height=5, width_policy='auto', height_policy='fixed')
vacc_risk_spacer_v = Spacer(width=20, height=70, width_policy='auto', height_policy='fixed')
layout6_h = layout(column(row(vacc_risk_cfr_tabset, vacc_risk_spacer, vacc_risk_chr_tabset, vacc_risk_spacer2, vacc_risk_notes), vacc_risk_spacer_v ), name='section6', sizing_mode='scale_width')
layout6_v = layout(column(vacc_risk_cfr_tabset, vacc_risk_spacer, vacc_risk_chr_tabset), name='section6', sizing_mode='scale_width')
# seventh
layout7 = layout(column(final_notes), name='section7', sizing_mode='scale_width')
return layout1_h, layout2_h, layout3_h, layout1_v, layout2_v, layout3_v, controls1, controls2, plot_incidence,\
layout4_h, layout4_v, layout5_h, layout5_v, layout6_h, layout6_v, layout7
def adjust_widgets_to_layout( horizontal ):
plot_list = [ plot1, plot1_map, plot2, plot3, plot4, plot5, plot6, plot7, plot8, plot9, plot10, plot11, plot12, plot_map ]
plot_list_l = [ plot3, plot7, plot9, plot10, plot11, plot12 ] # these ones have legend
for p in plot_list:
if horizontal:
p.title.text_font_size = TITLE_SIZE_HORIZONTAL_LAYOUT
else:
p.title.text_font_size = TITLE_SIZE_VERTICAL_LAYOUT
for p in plot_list_l:
if horizontal:
p.legend.label_text_font_size = PLOT_LEGEND_FONT_SIZE
else:
p.legend.label_text_font_size = PLOT_LEGEND_FONT_SIZE_VERTICAL_LAYOUT
if horizontal:
plot_map.plot_width = MAP_WIDTH
plot_map.plot_height = MAP_HEIGHT
plot1_map.width = PLOT_WIDTH
plot1_map.height = PLOT_HEIGHT
date_slider_map.width = PLOT_WIDTH - 40
else:
factor = 1.7
factor2 = 1.91
plot_map.plot_width = int(MAP_WIDTH * factor)
plot_map.plot_height = int(MAP_HEIGHT * factor)
plot1_map.width = int(plot1_map.plot_width * factor2)
plot1_map.height = PLOT_HEIGHT
date_slider_map.width = plot1_map.width - 40
### end of layouts ####
### main ###
curdoc().title = PAGE_TITLE
# fetch data from files
# data for regular plots
data_dates, data_dates2, processed_data, raw_data = get_data()
data_new = processed_data[0]
data_hosp = processed_data[1]
data_hosp_uci = processed_data[2]
data_cv19_deaths = processed_data[3]
data_incidence = processed_data[4]
data_cfr = processed_data[5]
data_rt = processed_data[6]
data_pos = processed_data[7]
data_total_deaths = processed_data[8]
data_avg_deaths = processed_data[9]
data_avg_deaths_inf = processed_data[10]
data_avg_deaths_sup = processed_data[11]
data_strat_new = processed_data[12]
data_strat_cv19_deaths = processed_data[13]
data_strat_cfr = processed_data[14]
data_vacc_part = processed_data[15]
data_vacc_full = processed_data[16]
data_vacc_boost = processed_data[17]
data_strat_mort = processed_data[18]
data_min_prevalence = processed_data[19]
data_max_prevalence = processed_data[20]
data_avg_prevalence = processed_data[21]
data_vacc_cfr = processed_data[22]
data_vacc_chr = processed_data[23]
data_tests = processed_data[24]
raw_data_new = raw_data[0]
raw_data_cv19_deaths = raw_data[1]
raw_data_total_deaths = raw_data[2]
raw_data_avg_deaths = raw_data[3]
data_exc_deaths = np.array(data_total_deaths) - np.array(data_avg_deaths)
raw_data_exc_deaths = np.array(raw_data_total_deaths) - np.array(raw_data_avg_deaths)
# IMPORTANT
#
# We use the raw data for the excess mortality calculations
# but we are using the smoothed data for the correlation between
# excess mortality and cv mortality because doing otherwise leads
# to strange results such as week correlation between 26-09-2020 and 22-12-2020
# where the correlation is more than obvious (return to school, pre vax)
#
# It might be that the CV19 reporting dates might not match the dates reported
# by the eVM database, for the deaths events of the same people
corr_data_exc_deaths = data_exc_deaths
corr_data_cv19_deaths = data_cv19_deaths
# map data
data_incidence_counties, map_date_i, map_date_f = get_data_counties()
# our original data has one line per county, and each line contains a set of polygons
# for a performant map update on update_map we need to keep a converted version
# this version has multiple lines with the same index for counties that hove multipolygons
aux_df = convert_geoDataFrame_to_patches(data_incidence_counties, 'geometry')
# the conversion transforms lines that have multiple polygons into multiple lines with the same index
# index has repeated values because of that
aux_index = aux_df.index
# calculate the nr of days using the most reliable source
days = len(data_new)
days2 = len(data_dates2)
plot_data_s1 = []
plot_data_s2 = []
#### First page ####
# one
source_plot1 = make_data_source_dates(data_dates, data_tests)
plot1 = make_plot('tests', PLOT1_TITLE, days, 'datetime')
l11 = plot1.line('x', 'y', source=source_plot1, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, )
set_plot_details(plot1, 'Date', 'Count', '@x{%F}', '@y{0.00}', 'vline', False, False)
set_plot_date_details(plot1, data_dates, days, source_plot1)
plot_data_s1.append( (plot1, source_plot1) )
# two
source_plot2 = make_data_source_dates(data_dates, data_pos)
plot2 = make_plot('positivity', PLOT2_TITLE, days, 'datetime')
l21 = plot2.line('x', 'y', source=source_plot2, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, )
set_plot_details(plot2, 'Date', '%', '@x{%F}', '@y{0.00}', 'vline', False, False)
set_plot_date_details(plot2, data_dates, days, source_plot2)
plot_data_s1.append( (plot2, source_plot2) )
# three
source_plot3 = ColumnDataSource(pd.DataFrame(data={ 'x': data_dates, 'y': data_hosp, 'y2': list(np.array(data_hosp_uci) * 5), 'y3': data_hosp_uci }, columns=['x', 'y', 'y2', 'y3']))
plot3 = make_plot('hosp', PLOT3_TITLE, days, 'datetime')
l31 = plot3.line('x', 'y', source=source_plot3, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, legend_label='Total' )
l32 = plot3.line('x', 'y2', source=source_plot3, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_HIGHLIGHT, legend_label='UCI x5' )
plot3.legend.location = 'top_right'
set_plot_details(plot3, 'Date', 'Total', '@x{%F}', '@y{0}', 'vline', False, False, 'UCI', "@y3{0}", l31)
set_plot_date_details(plot3, data_dates, days, source_plot3)
plot3.legend.label_text_font_size = PLOT_LEGEND_FONT_SIZE
plot_data_s1.append( (plot3, source_plot3) )
# four
source_plot4 = make_data_source_dates(data_dates, data_cfr)
plot4 = make_plot('cfr', PLOT4_TITLE, days, 'datetime')
plot4.line('x', 'y', source=source_plot4, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, )
set_plot_details(plot4, 'Date', '%', '@x{%F}', '@y{0.00}', 'vline', False, False)
set_plot_date_details(plot4, data_dates, days)
plot_data_s1.append( (plot4, source_plot4) )
# five
source_plot5 = make_data_source_dates(data_dates, data_new)
plot5 = make_plot('new', PLOT5_TITLE, days, 'datetime')
plot5.line('x', 'y', source=source_plot5, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, )
set_plot_details(plot5, 'Date', 'Count', '@x{%F}', '@y{0}', 'vline', False, False)
set_plot_date_details(plot5, data_dates, days, source_plot5)
plot_data_s1.append( (plot5, source_plot5) )
# six
source_plot6 = make_data_source_dates(data_dates, data_rt)
plot6 = make_plot('rt', PLOT8_TITLE, days, 'datetime')
plot6.line('x', 'y', source=source_plot6, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, )
set_plot_details(plot6, 'Date', 'Value', '@x{%F}', '@y{0.00}', 'vline', False, False)
set_plot_date_details(plot6, data_dates, days, source_plot6)
plot_data_s1.append( (plot6, source_plot6) )
# seven
df = pd.DataFrame(data={ 'x': data_dates, 'y': data_total_deaths, 'y2': data_avg_deaths, 'y3': data_avg_deaths_inf, 'y4': data_avg_deaths_sup }, columns=['x', 'y', 'y2', 'y3', 'y4'])
source_plot7 = ColumnDataSource(df)
plot7 = make_plot('total deaths', PLOT7_TITLE, days, 'datetime')
l71 = plot7.line('x', 'y', source=source_plot7, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, legend_label='Current' )
l72 = plot7.line('x', 'y2', source=source_plot7, line_width=1, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_REFERENCE, legend_label='2015-2019 ± SD' )
band = Band(base='x', lower='y3', upper='y4', source=source_plot7, level='underlay', line_width=1, line_color=PLOT_LINE_COLOR_HIGHLIGHT, fill_color=PLOT_LINE_COLOR_HIGHLIGHT, line_alpha=PLOT_LINE_ALPHA, fill_alpha=PLOT_LINE_ALPHA)
plot7.add_layout(band)
plot7.legend.location = 'top_right'
set_plot_details(plot7, 'Date', 'Current', '@x{%F}', '@y{0}', 'vline', False, False, '2015-2019', "@y2{0} (@y3{0}-@y4{0})", l71)
set_plot_date_details(plot7, data_dates, days, source_plot7)
plot7.legend.label_text_font_size = PLOT_LEGEND_FONT_SIZE
plot_data_s1.append( (plot7, source_plot7) )
# eight
source_plot8 = make_data_source_dates(data_dates, data_cv19_deaths)
plot8 = make_plot('deaths', PLOT6_TITLE, days, 'datetime')
plot8.line('x', 'y', source=source_plot8, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, )
set_plot_details(plot8, 'Date', 'Count', '@x{%F}', '@y{0}', 'vline', False, False)
set_plot_date_details(plot8, data_dates, days, source_plot8)
plot_data_s1.append( (plot8, source_plot8) )
# Critical lines
# default, primary, success, warning, danger, light
clines_switch = Toggle(label=CLINES_LABEL, button_type='default', align='end', width=CLINES_SWITCH_WIDTH, height=CLINES_SWITCH_HEIGHT, name='section1_button')
clines_switch.on_click(update_state)
source_plot2_critical = make_data_source_dates(data_dates, np.full( days, POSITIVITY_LIMIT ))
source_plot3_critical = make_data_source_dates(data_dates, np.full( days, UCI_LIMIT ))
source_plot6_critical = make_data_source_dates(data_dates, np.full( days, RT_LIMIT ))
# critical lines
cline2 = plot2.line('x', 'y', source=source_plot2_critical, line_width=PLOT_LINE_WIDTH_CRITICAL, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_CRITICAL)
cline3 = plot3.line('x', 'y', source=source_plot3_critical, line_width=PLOT_LINE_WIDTH_CRITICAL, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_CRITICAL)
cline4 = plot6.line('x', 'y', source=source_plot6_critical, line_width=PLOT_LINE_WIDTH_CRITICAL, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_CRITICAL)
cline2.visible = False
cline3.visible = False
cline4.visible = False
# date range widget
# for scale calculation we start later because of the moving average
date_i = data_dates[0 + 6]
date_f = data_dates[days - 1]
date_slider1 = DateRangeSlider(title="Date Range: ", start=date_i, end=date_f, value=( date_i, date_f ), step=1)
# we want the plots to change in real time but the stats only to be updated after the user stopped moving the mouse
date_slider1.on_change('value', partial(update_plot_range, section="1"))
date_slider1.on_change('value', partial(update_legends, section="1"))
date_slider1.on_change('value_throttled', partial(update_stats))
# the statistical summary
stats_table = make_stats_table(STATS_WIDTH, STATS_HEIGHT, 'end')
# the parameters are dummy as we take the values directly from the slider
update_stats(0, 0, 0)
#### Second page ####
nr_series = len(data_strat_new)
labels = make_age_labels(nr_series, nr_series)
palette = PLOT_LINE_COLOR_PALETTE
# spacing the color as much as possible
color_multiplier = math.floor(256 / nr_series + 1)
# nine
source_plot9 = make_data_source_multi_dates(data_dates2, data_strat_new)
plot9 = make_plot('plot9', PLOT9_TITLE, days2, 'datetime')
lines = []
for j in range(0, nr_series ):
lines.append( plot9.line('x', 'y' + str(j), source=source_plot9, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=palette[color_multiplier * j], muted_alpha=PLOT_LINE_ALPHA_MUTED, legend_label=labels[j] ) )
# we know by inspection that line representing 40-49 is on top
set_plot_details_multi(plot9, 'Date', labels, '@x{%F}', 'vline', lines[4], False, False)
set_plot_date_details(plot9, data_dates2, days2, source_plot9)
plot_data_s2.append( (plot9, source_plot9) )
# ten
source_plot10 = make_data_source_multi_dates(data_dates2, data_strat_cv19_deaths)
plot10 = make_plot('plot10', PLOT10_TITLE, days2, 'datetime')
lines = []
for j in range(0, nr_series ):
lines.append( plot10.line('x', 'y' + str(j), source=source_plot10, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=palette[color_multiplier * j], muted_alpha=PLOT_LINE_ALPHA_MUTED, legend_label=labels[j] ) )
# the line for >= 80 is on top for this case
set_plot_details_multi(plot10, 'Date', labels, '@x{%F}', 'vline', lines[nr_series - 1], False, False)
set_plot_date_details(plot10, data_dates2, days2, source_plot10)
plot_data_s2.append( (plot10, source_plot10) )
# eleven
# we append the average CFR line clipped to the number of available days
data_strat_cfr.append(data_cfr[0:days2])
cfr_nr_series = nr_series + 1
source_plot11 = make_data_source_multi_dates(data_dates2, data_strat_cfr)
plot11 = make_plot('plot11', PLOT11_TITLE, days2, 'datetime')
lines = []
# adding the standard age stratified lines
for j in range(0, nr_series ):
lines.append( plot11.line('x', 'y' + str(j), source=source_plot11, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=palette[color_multiplier * j], muted_alpha=PLOT_LINE_ALPHA_MUTED, legend_label=labels[j] ) )
# adding the average CFR line to the plot
lines.append( plot11.line('x', 'y' + str(j + 1), source=source_plot11, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_REFERENCE, muted_alpha=PLOT_LINE_ALPHA_MUTED, legend_label='Average' ) )
cfr_tooltip = ('Average', '@' + 'y' + str(j + 1) + '{0.0}')
# the line for >= 80 is just under the average CFR line, which is on top
set_plot_details_multi(plot11, 'Days', labels, '@x{%F}', 'vline', lines[cfr_nr_series - 2 ], True, False, cfr_tooltip)
set_plot_date_details(plot11, data_dates2, days2, source_plot11)
plot_data_s2.append( (plot11, source_plot11) )
# twelve
df12 = pd.DataFrame(data={ 'x': data_dates2, 'y': data_vacc_part, 'y2': data_vacc_full, 'y3': data_vacc_boost }, columns=['x', 'y', 'y2', 'y3'])
source_plot12 = ColumnDataSource(df12)
plot12 = make_plot('vaccination', PLOT12_TITLE, days, 'datetime')
l121 = plot12.line('x', 'y', source=source_plot12, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, legend_label='Partial' )
l122 = plot12.line('x', 'y2', source=source_plot12, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_HIGHLIGHT, legend_label='Complete' )
l122 = plot12.line('x', 'y3', source=source_plot12, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_REFERENCE, legend_label='Booster' )
plot12.legend.location = 'top_left'
set_plot_details(plot12, 'Date', 'Partial', '@x{%F}', '@y{0}', 'vline', False, False, 'Complete', "@y2{0}", l121, False, 'Booster', "@y3{0}")
set_plot_date_details(plot12, data_dates2, days2, source_plot12)
plot_data_s2.append( (plot12, source_plot12) )
# date range widget
# we use the earlier end date for this
date2_f = data_dates2[-1]
#
date_slider2 = DateRangeSlider(title="Date Range: ", start=date_i, end=date2_f, value=( date_i, date2_f ), step=1)
date_slider2.on_change('value', partial(update_plot_range, section="2"))
date_slider2.on_change('value', partial(update_legends, section="2"))
#### Third page ####
# pandas option, necessary for bokeh plots from pandas
pd.set_option('plotting.backend', 'pandas_bokeh')
plot_map, plot_map_s1 = make_map_plot( data_incidence_counties )
source_plot_incidence = make_data_source_dates(data_dates, data_incidence)
plot_incidence = make_plot('incidence', PLOT_INCIDENCE_TITLE, days, 'datetime')
l_incidence = plot_incidence.line('x', 'y', source=source_plot_incidence, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, )
set_plot_details(plot_incidence, 'Date', 'Count', '@x{%F}', '@y{0.00}', 'vline', False, False)
set_plot_date_details(plot_incidence, data_dates, days, source_plot_incidence)
# here the date range is shorter because the data delivery was interrupted earlier
plot_incidence.x_range.start = pd.to_datetime(map_date_i)
plot_incidence.x_range.end = pd.to_datetime(map_date_f)
# the step parameter is in miliseconds
step_days = 7
date_slider_map = DateSlider(title='Selected date', start=map_date_i, end=map_date_f, value=map_date_f, step=step_days * 1000 * 60 * 60 * 24, width_policy='fixed', width=PLOT_WIDTH - 40 )
date_slider_map.on_change('value_throttled', partial(update_map))
#### Fourth page ####
# the first one is raw, the second is smoothed
total_deaths_strat = data_strat_mort[0]
s_total_deaths_strat = data_strat_mort[1]
# the rigorous versions are used for the calculations
avg_deaths_strat = data_strat_mort[2]
avg_deaths_strat_inf = data_strat_mort[3]
avg_deaths_strat_sup = data_strat_mort[4]
# we obtain the smooth versions for the plot
s_avg_deaths_strat = data_strat_mort[5]
s_avg_deaths_strat_inf = data_strat_mort[6]
s_avg_deaths_strat_sup = data_strat_mort[7]
# we are smoothing the average historic mortality on the plot, but not the yellow bands as it does not seem visually necessary
p4_plot1 = make_mortality_plot( data_dates, s_total_deaths_strat[0], s_avg_deaths_strat[0], avg_deaths_strat_inf[0], avg_deaths_strat_sup[0], days, '<1' )
p4_plot2 = make_mortality_plot( data_dates, s_total_deaths_strat[1], s_avg_deaths_strat[1], avg_deaths_strat_inf[1], avg_deaths_strat_sup[1], days, '1-4' )
p4_plot3 = make_mortality_plot( data_dates, s_total_deaths_strat[2], s_avg_deaths_strat[2], avg_deaths_strat_inf[2], avg_deaths_strat_sup[2], days, '5-14' )
p4_plot4 = make_mortality_plot( data_dates, s_total_deaths_strat[3], s_avg_deaths_strat[3], avg_deaths_strat_inf[3], avg_deaths_strat_sup[3], days, '15-24' )
p4_plot5 = make_mortality_plot( data_dates, s_total_deaths_strat[4], s_avg_deaths_strat[4], avg_deaths_strat_inf[4], avg_deaths_strat_sup[4], days, '25-34' )
p4_plot6 = make_mortality_plot( data_dates, s_total_deaths_strat[5], s_avg_deaths_strat[5], avg_deaths_strat_inf[5], avg_deaths_strat_sup[5], days, '35-44' )
p4_plot7 = make_mortality_plot( data_dates, s_total_deaths_strat[6], s_avg_deaths_strat[6], avg_deaths_strat_inf[6], avg_deaths_strat_sup[6], days, '45-54' )
p4_plot8 = make_mortality_plot( data_dates, s_total_deaths_strat[7], s_avg_deaths_strat[7], avg_deaths_strat_inf[7], avg_deaths_strat_sup[7], days, '55-64' )
p4_plot9 = make_mortality_plot( data_dates, s_total_deaths_strat[8], s_avg_deaths_strat[8], avg_deaths_strat_inf[8], avg_deaths_strat_sup[8], days, '65-74' )
p4_plot10 = make_mortality_plot( data_dates, s_total_deaths_strat[9], s_avg_deaths_strat[9], avg_deaths_strat_inf[9], avg_deaths_strat_sup[9], days, '75-84' )
p4_plot11 = make_mortality_plot( data_dates, s_total_deaths_strat[10], s_avg_deaths_strat[10], avg_deaths_strat_inf[10], avg_deaths_strat_sup[10], days, '>85' )
p4_plot12 = make_mortality_plot( data_dates, s_total_deaths_strat[11], s_avg_deaths_strat[11], avg_deaths_strat_inf[11], avg_deaths_strat_sup[11], days, 'all ages' )
# for this special tab the overal deaths are the same, but the references (avg, inf and sup) have been corrected
p4_plot13 = make_mortality_plot( data_dates, s_total_deaths_strat[12], s_avg_deaths_strat[12], avg_deaths_strat_inf[12], avg_deaths_strat_sup[12], days, 'all ages *')
p4_plots = [ p4_plot1, p4_plot2, p4_plot3, p4_plot4, p4_plot5, p4_plot6, p4_plot7, p4_plot8, p4_plot9, p4_plot10, p4_plot11, p4_plot12, p4_plot13 ]
tab1 = Panel(child=p4_plot1, title='<1' )
tab2 = Panel(child=p4_plot2, title='1-4' )
tab3 = Panel(child=p4_plot3, title='5-14' )
tab4 = Panel(child=p4_plot4, title='15-24' )
tab5 = Panel(child=p4_plot5, title='25-34' )
tab6 = Panel(child=p4_plot6, title='35-44' )
tab7 = Panel(child=p4_plot7, title='45-54' )
tab8 = Panel(child=p4_plot8, title='55-64' )
tab9 = Panel(child=p4_plot9, title='65-74' )
tab10 = Panel(child=p4_plot10, title='75-84' )
tab11 = Panel(child=p4_plot11, title='>85' )
tab12 = Panel(child=p4_plot12, title='all ages' )
tab13 = Panel(child=p4_plot13, title='all ages *' )
mort_explorer_tabset = Tabs(tabs=[ tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8, tab9, tab10, tab11, tab12, tab13 ])
# make sure the tab for all ages is selected
mort_explorer_tabset.active = 12
date_slider4 = DateRangeSlider(title="Date Range: ", start=date_i, end=date_f, value=( date_i, date_f ), step=1, width=PLOT_WIDTH4 - 50)
date_slider4.on_change('value', partial(update_mortality_plot_range))
date_slider4.on_change('value_throttled', partial(update_mortality_stats))
# annotations to visually mask the non-affected date range
# in the initial moment they are invisible because the left and right parameters are the same
pre_box = BoxAnnotation(left=date_i, right=date_i, fill_alpha=PLOT_AREAS_ALPHA4, fill_color=PLOT_AREAS_COLOR4)
post_box = BoxAnnotation(left=date_f, right=date_f, fill_alpha=PLOT_AREAS_ALPHA4, fill_color=PLOT_AREAS_COLOR4)
for p in p4_plots:
p.add_layout(pre_box)
p.add_layout(post_box)
# the statistics table
mortality_stats_table = make_mortality_stats_table(MORT_STATS_TABLE_WIDTH, MORT_STATS_TABLE_HEIGHT, 'end')
# and its caption
mortality_notes = Div(text='dummy', width=MORT_TEXT_WIDTH, align='center')
# plus the note for the special row
mortality_notes2 = Div(text='</br>* contains a correction for population aging that converts deaths from 2015-2019 into equivalent current year deaths', align='start')
# forces vertical alignement on the table stats column
table_spacer4_top = Spacer(width=40, height=10, width_policy='auto', height_policy='fixed')
mortality_stats_column = column(table_spacer4_top, mortality_stats_table, mortality_notes, mortality_notes2)
# now let's create the correlation plot
# fix the data in case it has leading NaNs due to moving averages
# we assume the leading NaNs are the same for x and y, when they exist
clean_data_cv19_deaths = get_clean_data(corr_data_cv19_deaths)
clean_data_exc_deaths = get_clean_data(corr_data_exc_deaths)
# height and width are the same because we want it to be square for easier reading
corr_width = MORT_STATS_TABLE_WIDTH
plot_correlation, source_plot_correlation, correlation_coefficient, regression_line, regression_label = make_correlation_plot( clean_data_cv19_deaths, clean_data_exc_deaths, 'Covid deaths', 'Excess deaths', corr_width, corr_width)
table_spacer4_top2 = Spacer(width=40, height=1, width_policy='auto', height_policy='fixed')
table_spacer4_bottom = Spacer(width=40, height=5, width_policy='auto', height_policy='fixed')
mortality_correlation_column = column(table_spacer4_top2, plot_correlation, table_spacer4_bottom, mortality_notes)
# and a tabset for the table + plot
tab2_1 = Panel(child=mortality_stats_column, title='Stats' )
tab2_2 = Panel(child=mortality_correlation_column, title='Correlation' )
mort_explorer_tabset2 = Tabs(tabs=[ tab2_1, tab2_2 ])
# with the table selected by default
mort_explorer_tabset2.active = 0
# the parameters are dummy as we take the values directly from the slider
update_mortality_stats(0, 0, 0)
#### Fifth page ####
source_plot_prevalence = ColumnDataSource(pd.DataFrame(data={ 'x': data_dates, 'y': data_max_prevalence, 'y2': data_avg_prevalence, 'y3': data_min_prevalence, }, columns=['x', 'y', 'y2', 'y3' ]))
plot_prevalence = make_plot('prevalance', PLOT_PREVALENCE_TITLE, days, 'datetime', PLOT_HEIGHT5, PLOT_WIDTH5)
l_prev1 = plot_prevalence.line('x', 'y', source=source_plot_prevalence, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR_REFERENCE, legend_label='Max prevalence' )
l_prev2 = plot_prevalence.line('x', 'y2', source=source_plot_prevalence, line_width=PLOT_LINE_WIDTH, line_alpha=0.9, line_color=PLOT_LINE_COLOR, legend_label='Avg prevalence' )
l_prev3 = plot_prevalence.line('x', 'y3', source=source_plot_prevalence, line_width=PLOT_LINE_WIDTH, line_alpha=PLOT_LINE_ALPHA, line_color=PLOT_LINE_COLOR, legend_label='Min prevalence' )
plot_prevalence.legend.location = 'top_left'
set_plot_details(plot_prevalence, 'Date', 'Max %', '@x{%F}', '@y{0.00}', 'vline', False, False, 'Avg %', "@y2{0.00}", l_prev1, True, 'Min %', "@y3{0.00}")
set_plot_date_details(plot_prevalence, data_dates, days, source_plot_prevalence)
plot_prevalence.legend.label_text_font_size = PLOT_LEGEND_FONT_SIZE
prevalence_notes = Div(text=PREV_TEXT, width=PREV_TEXT_WIDTH, align='start')
#### Sixth page ####
# one plot with CFR and CHR per age group
p6_plot_cfr_50_59 = make_vacc_risk_plot(data_vacc_cfr, VACC_CFR_TITLE, '50_59')
p6_plot_cfr_60_69 = make_vacc_risk_plot(data_vacc_cfr, VACC_CFR_TITLE, '60_69')
p6_plot_cfr_70_79 = make_vacc_risk_plot(data_vacc_cfr, VACC_CFR_TITLE, '70_79')
p6_plot_cfr_80_plus = make_vacc_risk_plot(data_vacc_cfr, VACC_CFR_TITLE, '80mais')
tab6_cfr_1 = Panel(child=p6_plot_cfr_50_59, title='50-59')
tab6_cfr_2 = Panel(child=p6_plot_cfr_60_69, title='60-69')
tab6_cfr_3 = Panel(child=p6_plot_cfr_70_79, title='70-79')
tab6_cfr_4 = Panel(child=p6_plot_cfr_80_plus, title='>80')
p6_plot_chr_50_59 = make_vacc_risk_plot(data_vacc_chr, VACC_CHR_TITLE, '50_59')
p6_plot_chr_60_69 = make_vacc_risk_plot(data_vacc_chr, VACC_CHR_TITLE, '60_69')
p6_plot_chr_70_79 = make_vacc_risk_plot(data_vacc_chr, VACC_CHR_TITLE, '70_79')
p6_plot_chr_80_plus = make_vacc_risk_plot(data_vacc_chr, VACC_CHR_TITLE, '80mais')
tab6_chr_1 = Panel(child=p6_plot_chr_50_59, title='50-59')
tab6_chr_2 = Panel(child=p6_plot_chr_60_69, title='60-69')
tab6_chr_3 = Panel(child=p6_plot_chr_70_79, title='70-79')
tab6_chr_4 = Panel(child=p6_plot_chr_80_plus, title='>80')
vacc_risk_cfr_tabset = Tabs(tabs=[ tab6_cfr_1, tab6_cfr_2, tab6_cfr_3, tab6_cfr_4 ])
vacc_risk_chr_tabset = Tabs(tabs=[ tab6_chr_1, tab6_chr_2, tab6_chr_3, tab6_chr_4 ])
vacc_risk_cfr_tabset.active = 3
vacc_risk_chr_tabset.active = 3
vacc_risk_notes = Div(text=VACC_RISK_TEXT, width=VACC_RISK_TEXT_WIDTH, align='start')
#### Seventh page ####