forked from aimuch/AITools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_boxes.py
161 lines (133 loc) · 5.84 KB
/
calculate_boxes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#-*-coding=utf-8 -*-
import json
import os
import re
import numpy as np
import math
import pandas as pd
import PIL.Image
import PIL.ImageDraw
def shape_to_mask(img_shape, points, shape_type=None, line_width=10, point_size=5):
mask = np.zeros(img_shape[:2], dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
draw = PIL.ImageDraw.Draw(mask)
xy = [tuple(point) for point in points]
if shape_type == 'circle':
assert len(xy) == 2, 'Shape of shape_type=circle must have 2 points'
(cx, cy), (px, py) = xy
d = math.sqrt((cx - px) ** 2 + (cy - py) ** 2)
draw.ellipse([cx - d, cy - d, cx + d, cy + d], outline=1, fill=1)
elif shape_type == 'rectangle':
assert len(xy) == 2, 'Shape of shape_type=rectangle must have 2 points'
draw.rectangle(xy, outline=1, fill=1)
elif shape_type == 'line':
assert len(xy) == 2, 'Shape of shape_type=line must have 2 points'
draw.line(xy=xy, fill=1, width=line_width)
elif shape_type == 'linestrip':
draw.line(xy=xy, fill=1, width=line_width)
elif shape_type == 'point':
assert len(xy) == 1, 'Shape of shape_type=point must have 1 points'
cx, cy = xy[0]
r = point_size
draw.ellipse([cx - r, cy - r, cx + r, cy + r], outline=1, fill=1)
else:
# assert len(xy) > 2, 'Polygon must have points more than 2'
if len(xy) > 2:
draw.polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def get_edge_num(points):
num = 0
length = len(points)
for index in range(1, length-1):
diff_x = abs(points[index-1][0] + points[index+1][0] - 2*points[index][0])
diff_y = abs(points[index-1][1] + points[index+1][1] - 2*points[index][1])
if diff_x > 2 and diff_y > 2:
num += 1
diff_x = abs(points[length-1][0] + points[1][0] - 2 * points[0][0])
diff_y = abs(points[length-1][1] + points[1][1] - 2 * points[0][1])
if diff_x > 2 and diff_y > 2:
num += 1
diff_x = abs(points[length-2][0] + points[0][0] - 2 * points[length-1][0])
diff_y = abs(points[length-2][1] + points[0][1] - 2 * points[length-1][1])
if diff_x > 2 and diff_y > 2:
num += 1
return num
def shapes_to_label(img_shape, shapes):
cls = np.zeros(img_shape[:2], dtype=np.int32)
label_edge_num = {}
for index, shape in enumerate(shapes):
points = shape['polygon']
cls_id = index+1
mask = shape_to_mask(img_shape[:2], points, 'polygon')
cls[mask] = cls_id
num = get_edge_num(points)
label_edge_num[index+1] = num
return cls, label_edge_num
def get_every_object_pix_num(image):
class_num = image.max()
obj_num = dict(zip(range(class_num+1), [0]*(class_num+1)))
height, width = image.shape
for index_i in range(height):
for index_j in range(width):
obj_num[image[index_i][index_j]] +=1
return obj_num
def not_satisfy_num(lbl_num, label_edge_num, pix_thresh, edge_thresh):
pix_num, edge_num = 0, 0
for label,num in lbl_num.items():
if num >= pix_thresh and label != 0:
pix_num += 1
# for label, num in label_edge_num.items():
# if num <= edge_thresh:
# edge_num += 1
return pix_num, edge_num
def write_data_to_excle(file_path, column_name, datas):
data = pd.np.vstack(datas)
column_name = column_name
df = pd.DataFrame(data=data.transpose(), columns=column_name)
df.to_excel(file_path, index=False)
if __name__ == '__main__':
# 注意:tx保存的是jpg, 其他的是png格式的
print('正在处理数据..., 请等待!')
# '''将json的整个文件夹放在./data下'''
# files_path = './data'
files_path = '/media/andy/Data/Data/APA_SSE/APA_xinboyou/收回成品/a'
#file_org = './result_area_edge'
#if not os.path.isdir(file_org):
# os.mkdir(file_org)
all_name, all_pix_num, all_edge_num = [],[],[]
i = 1
file_names = os.listdir(files_path)
for file_name in file_names:
file_path = os.path.join(files_path, file_name)
files = os.listdir(file_path)
json_file = [name for name in files if name.endswith('json')]
for json_name in json_file:
# json_name = '4_jpg.json'
json_path = os.path.join(file_path, json_name)
if os.path.isfile(json_path):
json_data = json.load(open(json_path))
img_name = json_name.replace('.json', '.png')
image_path = os.path.join(file_path, img_name)
# image_data = json_data['imageData']
Height = json_data['imgHeight']
Width = json_data['imgWidth']
# b = cv2.imread(image_path) #路径必须是中文的 与img结构是一样的
# with open(image_path, 'rb') as f: #路径含中文的,读取二进制
# image_data = f.read()
# image_data = base64.b64encode(image_data).decode('utf-8')
# img = img_b64_to_arr(image_data) # 解析原图片数据
# json_data['shapes'] = modify_point(json_data['shapes'], img.shape)
# lbl_names = get_name_label(label_dict_init, json_data['shapes'])
lbl, label_edge_num = shapes_to_label((Height, Width), json_data['objects'])
lbl_num = get_every_object_pix_num(lbl)
pix_num, edge_num = not_satisfy_num(lbl_num, label_edge_num, 1, 3)
all_name.append(json_name)
all_pix_num.append(pix_num)
# all_edge_num.append(edge_num)
print(i)
i =i+1
print(json_name)
print('像素>=10的个数: ', pix_num, '; 边<=3的格式: ', edge_num)
write_data_to_excle('./output.xlsx', ['json_name', 'pix_num'], [all_name, all_pix_num])
print('数据处理完成!')