-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathclassifier_train.py
314 lines (225 loc) · 11.2 KB
/
classifier_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
'''
classifier_train.py
Author - Max Elliott
Training routine for proposed auxiliary classifier, when training only the
classifier. Can also train the dimensional classifier which was never used in
the thesis.
Command line arguments:
--checkpoint -c : Directory to load load model checkpoint from if desired
--num_emos -n : Number of emotional categories to classify (only for
categorical classifier)
--evaluate -e : Run the loaded model in testing mode instead
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import os
import yaml
import argparse
import librosa
from utils import audio_utils
import stargan.my_dataset as my_dataset
import stargan.classifiers as classifiers
from stargan.my_dataset import get_filenames
from train_main import make_weight_vector
import torchvision
import sklearn
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
USE_GPU = True
if USE_GPU and torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
print("Device used: ", device)
def save_checkpoint(state, filename='./checkpoints/cls_checkpoint.ckpt'):
print("Saving a new best model")
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename), exist_ok=True)
torch.save(state, filename) # save checkpoint
def load_checkpoint(model, optimiser, filename='./checkpoints/cls_checkpoint.ckpt'):
checkpoint = torch.load(filename)
model.load_state_dict(checkpoint['model_state_dict'])
optimiser.load_state_dict(checkpoint['optimiser_state_dict'])
epoch = checkpoint['epoch']
return epoch
def train_model(model, optimiser, train_data_loader, val_data_loader, loss_fn,
model_type='cls', epochs=1, print_every=1, var_len_data = False, start_epoch = 1):
model = model.to(device=device) # move the model parameters to CPU/GPU
print("Training model type: ", model_type)
best_model_score = 0. #best f1_score for saving checkpoints
for e in range(start_epoch, epochs+1):
total_loss = 0
for t, (x, y) in enumerate(train_data_loader):
model.train() # put model to training mode
if(var_len_data):
x_real = x[0].to(device = device).unsqueeze(1)
x_lens = x[1].to(device = device)
else:
x_real = x.to(device=device, dtype=torch.float)
y = y[:, 0].to(device=device, dtype=torch.float)
optimiser.zero_grad()
# print(x_real.size())
predictions = model(x_real, x_lens)
if(model_type == 'dim'):
y_val = y[:,0].long()
y_aro = y[:,1].long()
y_dom = y[:,2].long()
# print(y_val.size())
# print("predictions[0]:", predictions[0].size())
# print("predictions[1]:", predictions[1].size())
loss_val = loss_fn(predictions[0].float(), y_val)
loss_aro = loss_fn(predictions[1].float(), y_aro)
loss_dom = loss_fn(predictions[2].float(), y_aro)
loss = loss_val + loss_aro + loss_dom
else:
loss = loss_fn(predictions.float(), y.long())
loss.backward()
optimiser.step()
total_loss += loss.item()
# print("Epoch ", e, ", iteration", t, " done.")
if t % print_every == 0:
print(f'| Epoch: {e:02} | Train Loss: {total_loss:.3f}')
acc, f1, UAR = test_model(model, val_data_loader,
var_len_data=var_len_data,
model_type=model_type)
# log_writer.add_scalar('f1', f1)
# log_writer.add_scalar('lr', optimiser.state_dict()['param_groups'][0]['lr'])
print("Accuracy = ",acc*100,"%")
print(f"Macro-f1 score =", f1)
# print(f"UA-Recall =", UAR)
print()
if model_type == 'cls':
if f1 > best_model_score:
print(f"######################## New best model. f1 = {f1: .3f} ########################")
best_model_score = f1
state = {
'epoch': e,
'model_state_dict': model.state_dict(),
'optimiser_state_dict': optimiser.state_dict(),
'loss_fn': loss_fn}
save_checkpoint(state)
def test_model(model, test_loader, var_len_data=False, model_type='cls'):
model = model.to(device=device)
model.eval()
actual_preds = torch.rand(0).to(device = device, dtype = torch.long)
actual_preds_val = torch.rand(0).to(device = device, dtype = torch.long)
actual_preds_aro = torch.rand(0).to(device = device, dtype = torch.long)
# actual_preds_dom = torch.rand(0).to(device = device, dtype = torch.long)
total_y = torch.rand(0).to(device = device, dtype = torch.long)
total_y_val = torch.rand(0).to(device = device, dtype = torch.long)
total_y_aro = torch.rand(0).to(device = device, dtype = torch.long)
# total_y_dom = torch.rand(0).to(device = device, dtype = torch.long)
for i, (x, y) in enumerate(test_loader):
if var_len_data:
x_real = x[0].to(device = device).unsqueeze(1)
x_lens = x[1].to(device = device)
else:
x_real = x.to(device=device, dtype=torch.float)
y = y[:,0].to(device=device, dtype=torch.long)
preds = model(x_real, x_lens)
if model_type == 'dim':
y_val = y[:,0].long()
y_aro = y[:,1].long()
y_dom = y[:,2].long()
preds_val = torch.max(preds[0], dim = 1)[1]
preds_aro = torch.max(preds[1], dim = 1)[1]
# preds_dom = torch.max(preds[2], dim = 1)[1]
actual_preds_val = torch.cat((actual_preds_val, preds_val), dim=0)
actual_preds_aro = torch.cat((actual_preds_aro, preds_aro), dim=0)
# actual_preds_dom = torch.cat((actual_preds_dom, preds_dom), dim=0)
total_y_val = torch.cat((total_y_val, y_val), dim=0)
total_y_aro = torch.cat((total_y_aro, y_aro), dim=0)
# total_y_dom = torch.cat((total_y_dom, y_dom), dim=0)
else:
preds = torch.max(preds, dim = 1)[1]
actual_preds = torch.cat((actual_preds, preds), dim=0)
total_y = torch.cat((total_y, y), dim=0)
if model_type == 'dim':
# print(actual_preds_val[0:100])
# print(actual_preds_aro[0:100])
# print(actual_preds_dom[0:100])
print(actual_preds_val.size()[0], "total validation predictions.")
acc_val = accuracy_score(total_y_val.cpu(), actual_preds_val.cpu())
acc_aro = accuracy_score(total_y_aro.cpu(), actual_preds_aro.cpu())
# acc_dom = accuracy_score(total_y_dom.cpu(), actual_preds_dom.cpu())
UAR_val = recall_score(total_y_val.cpu(), actual_preds_val.cpu(), average = 'weighted')
UAR_aro = recall_score(total_y_aro.cpu(), actual_preds_aro.cpu(), average = 'weighted')
# UAR_dom = recall_score(total_y_dom.cpu(), actual_preds_dom.cpu(), average = 'weighted')
# print(f"UAR_val = {UAR_val: .3f}, UAR_aro = {UAR_aro: .3f}")
f1_val = f1_score(total_y_val.cpu(), actual_preds_val.cpu(), average = 'macro')
f1_aro = f1_score(total_y_aro.cpu(), actual_preds_aro.cpu(), average = 'macro')
# f1_dom = f1_score(total_y_dom.cpu(), actual_preds_dom.cpu(), average = 'macro')
return [acc_val, acc_aro], [f1_val,f1_aro], [UAR_val, UAR_aro]
else:
print(actual_preds.size()[0], "total validation predictions.")
print(actual_preds[0:100])
acc = accuracy_score(total_y.cpu(), actual_preds.cpu())
f1 = f1_score(total_y.cpu(), actual_preds.cpu(), average = 'macro')
UAR = recall_score(total_y.cpu(), actual_preds.cpu(), average = 'weighted')
return acc, f1, UAR
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Training loop for classifier only.')
parser.add_argument("-c", "--checkpoint", type=str, default=None,
help="Directory of checkpoint to resume training from")
parser.add_argument("-n", "--num_emos", type=int, default=3,
help="Number of emotions to classify")
parser.add_argument("-e", "--evaluate", action='store_true',
help="False = train, True = evaluate model")
parser.add_argument("--epochs", type=int, help='Number epochs of training.', default=50)
args = parser.parse_args()
SEED = 42
torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
# num_classes = 2
n_epochs = args.epochs
hidden_size = 128
input_size = 36
num_layers = 2
config = yaml.load(open('./config.yaml', 'r'))
# MAKE TRAIN + TEST SPLIT
mel_dir = os.path.join(config['data']['dataset_dir'], "world")
files = get_filenames(mel_dir)
num_emos = args.num_emos
label_dir = os.path.join(config['data']['dataset_dir'], 'labels')
files = [f for f in files if np.load(label_dir + "/" + f + ".npy")[0] < num_emos]
# files = [f for f in files if np.load(label_dir + "/" + f + ".npy")[1] in [9, 8, 7, 6]]
files = my_dataset.shuffle(files)
train_test_split = config['data']['train_test_split']
split_index = int(len(files)*train_test_split)
train_files = files[:split_index]
test_files = files[split_index:]
print(len(train_files))
print(len(test_files))
train_dataset = my_dataset.MyDataset(config, train_files)
test_dataset = my_dataset.MyDataset(config, test_files)
batch_size = 16
train_loader, test_loader = my_dataset.make_variable_dataloader(train_dataset,
test_dataset,
batch_size=batch_size)
# torch.Tensor([4040./549, 4040./890,
# 4040./996, 4040./1605]).to(device)
emo_loss_weights = make_weight_vector(files, config['data']['dataset_dir']).to(device)
print("Making model")
model = nn.DataParallel(classifiers.Emotion_Classifier(input_size, hidden_size,
num_layers = num_layers, num_classes = num_emos, bi = True))
# model = nn.DataParallel(classifiers.Dimension_Classifier(input_size, hidden_size,
# num_layers = num_layers, bi = True))
optimiser = optim.Adam(model.parameters(), lr=0.0001, weight_decay = 0.000001)
loss_fn = nn.CrossEntropyLoss(weight = emo_loss_weights)
epoch = 1
if args.checkpoint is not None:
epoch = load_checkpoint(model, optimiser, args.checkpoint)
print("Model loaded, resuming from epoch", epoch, ".")
if not args.evaluate:
print("Training model.")
train_model(model, optimiser, train_loader, test_loader, loss_fn, model_type='cls',
epochs = n_epochs, var_len_data = True, start_epoch=epoch)
else:
test_model(model, test_loader, model_type='cls', var_len_data=True)
print("No training. Model loaded in evaluation mode.")