Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Retrace Ops: documented return shapes #26

Open
tseyde opened this issue Oct 20, 2020 · 0 comments
Open

Retrace Ops: documented return shapes #26

tseyde opened this issue Oct 20, 2020 · 0 comments

Comments

@tseyde
Copy link

tseyde commented Oct 20, 2020

Hi, it seems like the documented returns shapes for the following functions might be off:

  1. retrace_ops.retrace(...)
  2. retrace_ops.retrace_core(...)
  3. retrace_ops._general_off_policy_corrected_multistep_target(...)

The first two are documented to return shape [B] and third shape [T, B, num_actions], while they all appear to return [T, B].

Some test code to check.

import numpy as np
import tensorflow as tf

from trfl import retrace_ops, indexing_ops


### Example input data: 
# https://github.com/deepmind/trfl/blob/08ccb293edb929d6002786f1c0c177ef291f2956/trfl/retrace_ops_test.py#L41

lambda_ = 0.9
qs = [
    [[2.2, 3.2, 4.2],
     [5.2, 6.2, 7.2]],
    [[7.2, 6.2, 5.2],
     [4.2, 3.2, 2.2]],
    [[3.2, 5.2, 7.2],
     [4.2, 6.2, 9.2]],
    [[2.2, 8.2, 4.2],
     [9.2, 1.2, 8.2]]
     ]
targnet_qs = [
    [[2., 3., 4.],
     [5., 6., 7.]],
    [[7., 6., 5.],
     [4., 3., 2.]],
    [[3., 5., 7.],
     [4., 6., 9.]],
    [[2., 8., 4.],
     [9., 1., 8.]]
     ]
actions = [
    [2, 0], 
    [1, 2], 
    [0, 1], 
    [2, 0]
    ]
rewards = [
    [1.9, 2.9], 
    [3.9, 4.9], 
    [5.9, 6.9], 
    [np.nan, np.nan]  # nan marks entries we should never use.
    ]
pcontinues = [
    [0.8, 0.9], 
    [0.7, 0.8], 
    [0.6, 0.5], 
    [np.nan, np.nan]
    ]
target_policy_probs = [
    [[np.nan] * 3,
     [np.nan] * 3],
    [[0.41, 0.28, 0.31],
     [0.19, 0.77, 0.04]],
    [[0.22, 0.44, 0.34],
     [0.14, 0.25, 0.61]],
    [[0.16, 0.72, 0.12],
     [0.33, 0.30, 0.37]]
     ]
behaviour_policy_probs = [
    [np.nan, np.nan], 
    [0.85, 0.86], 
    [0.87, 0.88], 
    [0.89, 0.84]
    ]

### Retrace Test: ###
retrace = retrace_ops.retrace(
        lambda_, qs, targnet_qs, actions, rewards,
        pcontinues, target_policy_probs, behaviour_policy_probs)

# qs: shape [(T+1), B, num_actions] 
# https://github.com/deepmind/trfl/blob/08ccb293edb929d6002786f1c0c177ef291f2956/trfl/retrace_ops.py#L85
T = len(qs) - 1  # sequence length
B = len(qs[0])  # batch dimension
N = len(qs[0][0])  # number of actions

# loss: documented shape [B] 
# https://github.com/deepmind/trfl/blob/08ccb293edb929d6002786f1c0c177ef291f2956/trfl/retrace_ops.py#L121
tf.debugging.assert_equal(retrace.loss.shape, [T, B])  # succeeds

### Multi-step target Test: ###
timesteps = tf.shape(qs)[0] # Batch size is qs_shape[1].
timestep_indices_tm1 = tf.range(0, timesteps - 1)
timestep_indices_t = tf.range(1, timesteps)

target_policy_t = tf.gather(target_policy_probs, timestep_indices_t)
behaviour_policy_t = tf.gather(behaviour_policy_probs, timestep_indices_t)
a_t = tf.gather(actions, timestep_indices_t)
r_t = tf.gather(rewards, timestep_indices_tm1)
pcont_t = tf.gather(pcontinues, timestep_indices_tm1)
targnet_q_t = tf.gather(targnet_qs, timestep_indices_t)

c_t = retrace_ops._retrace_weights(
        indexing_ops.batched_index(target_policy_t, a_t),
        behaviour_policy_t) * lambda_

target = retrace_ops._general_off_policy_corrected_multistep_target(
  r_t, pcont_t, target_policy_t, c_t, targnet_q_t, a_t
)

# target: documented shape [T, B, N] 
# https://github.com/deepmind/trfl/blob/08ccb293edb929d6002786f1c0c177ef291f2956/trfl/retrace_ops.py#L241
tf.debugging.assert_equal(target.shape, [T, B])  # succeeds

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant