-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathnq_browser.py
375 lines (294 loc) · 11.3 KB
/
nq_browser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Web frontend for browsing Google's Natural Questions.
Example usage:
pip install absl-py
pip install jinja2
pip install tornado
pip install wsgiref
python nq_browser --nq_jsonl=nq-train-sample.jsonl.gz
python nq_browser --nq_jsonl=nq-dev-sample.jsonl.gz --dataset=dev --port=8081
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import base64
import gzip
import json
import os
import wsgiref.simple_server
from absl import app
from absl import flags
import jinja2
import numpy as np
import tornado.web
import tornado.wsgi
FLAGS = flags.FLAGS
flags.DEFINE_string('nq_jsonl', None,
'Path to jsonlines file containing Natural Questions.')
flags.DEFINE_boolean('gzipped', True, 'Whether the jsonlines are gzipped.')
flags.DEFINE_enum('dataset', 'train', ['train', 'dev'],
'Whether this is training data or dev data.')
flags.DEFINE_integer('port', 8080, 'Port to listen on.')
flags.DEFINE_integer('max_examples', 200,
'Max number of examples to load in the browser.')
flags.DEFINE_enum('mode', 'all_examples',
['all_examples', 'long_answers', 'short_answers'],
'Subset of examples to show.')
class LongAnswerCandidate(object):
"""Representation of long answer candidate."""
def __init__(self, contents, index, is_answer, contains_answer):
self.contents = contents
self.index = index
self.is_answer = is_answer
self.contains_answer = contains_answer
if is_answer:
self.style = 'is_answer'
elif contains_answer:
self.style = 'contains_answer'
else:
self.style = 'not_answer'
class Example(object):
"""Example representation."""
def __init__(self, json_example):
self.json_example = json_example
# Whole example info.
self.url = json_example['document_url']
self.title = json_example.get('document_title', 'Wikipedia')
self.example_id = base64.urlsafe_b64encode(
str(self.json_example['example_id']).encode('utf-8'))
self.document_html = self.json_example['document_html'].encode('utf-8')
self.document_tokens = self.json_example['document_tokens']
self.question_text = json_example['question_text']
if FLAGS.dataset == 'train':
if len(json_example['annotations']) != 1:
raise ValueError(
'Train set json_examples should have a single annotation.')
annotation = json_example['annotations'][0]
self.has_long_answer = annotation['long_answer']['start_byte'] >= 0
self.has_short_answer = annotation[
'short_answers'] or annotation['yes_no_answer'] != 'NONE'
elif FLAGS.dataset == 'dev':
if len(json_example['annotations']) != 5:
raise ValueError('Dev set json_examples should have five annotations.')
self.has_long_answer = sum([
annotation['long_answer']['start_byte'] >= 0
for annotation in json_example['annotations']
]) >= 2
self.has_short_answer = sum([
bool(annotation['short_answers']) or
annotation['yes_no_answer'] != 'NONE'
for annotation in json_example['annotations']
]) >= 2
self.long_answers = [
a['long_answer']
for a in json_example['annotations']
if a['long_answer']['start_byte'] >= 0 and self.has_long_answer
]
self.short_answers = [
a['short_answers']
for a in json_example['annotations']
if a['short_answers'] and self.has_short_answer
]
self.yes_no_answers = [
a['yes_no_answer']
for a in json_example['annotations']
if a['yes_no_answer'] != 'NONE' and self.has_short_answer
]
if self.has_long_answer:
long_answer_bounds = [
(la['start_byte'], la['end_byte']) for la in self.long_answers
]
long_answer_counts = [
long_answer_bounds.count(la) for la in long_answer_bounds
]
long_answer = self.long_answers[np.argmax(long_answer_counts)]
self.long_answer_text = self.render_long_answer(long_answer)
else:
self.long_answer_text = ''
if self.has_short_answer:
short_answers_ids = [[
(s['start_byte'], s['end_byte']) for s in a
] for a in self.short_answers] + [a for a in self.yes_no_answers]
short_answers_counts = [
short_answers_ids.count(a) for a in short_answers_ids
]
self.short_answers_texts = [
', '.join([
self.render_span(s['start_byte'], s['end_byte'])
for s in short_answer
])
for short_answer in self.short_answers
]
self.short_answers_texts += self.yes_no_answers
self.short_answers_text = self.short_answers_texts[np.argmax(
short_answers_counts)]
self.short_answers_texts = set(self.short_answers_texts)
else:
self.short_answers_texts = []
self.short_answers_text = ''
self.candidates = self.get_candidates(
self.json_example['long_answer_candidates'])
self.candidates_with_answer = [
i for i, c in enumerate(self.candidates) if c.contains_answer
]
def render_long_answer(self, long_answer):
"""Wrap table rows and list items, and render the long answer.
Args:
long_answer: Long answer dictionary.
Returns:
String representation of the long answer span.
"""
if long_answer['end_token'] - long_answer['start_token'] > 500:
return 'Large long answer'
html_tag = self.document_tokens[long_answer['end_token'] - 1]['token']
if html_tag == '</Table>' and self.render_span(
long_answer['start_byte'], long_answer['end_byte']).count('<TR>') > 30:
return 'Large table long answer'
elif html_tag == '</Tr>':
return '<TABLE>{}</TABLE>'.format(
self.render_span(long_answer['start_byte'], long_answer['end_byte']))
elif html_tag in ['</Li>', '</Dd>', '</Dd>']:
return '<Ul>{}</Ul>'.format(
self.render_span(long_answer['start_byte'], long_answer['end_byte']))
else:
return self.render_span(long_answer['start_byte'],
long_answer['end_byte'])
def render_span(self, start, end):
return self.document_html[start:end].decode()
def get_candidates(self, json_candidates):
"""Returns a list of `LongAnswerCandidate` objects for top level candidates.
Args:
json_candidates: List of Json records representing candidates.
Returns:
List of `LongAnswerCandidate` objects.
"""
candidates = []
top_level_candidates = [c for c in json_candidates if c['top_level']]
for candidate in top_level_candidates:
tokenized_contents = ' '.join([
t['token'] for t in self.json_example['document_tokens']
[candidate['start_token']:candidate['end_token']]
])
start = candidate['start_byte']
end = candidate['end_byte']
is_answer = self.has_long_answer and np.any(
[(start == ans['start_byte']) and (end == ans['end_byte'])
for ans in self.long_answers])
contains_answer = self.has_long_answer and np.any(
[(start <= ans['start_byte']) and (end >= ans['end_byte'])
for ans in self.long_answers])
candidates.append(
LongAnswerCandidate(tokenized_contents, len(candidates), is_answer,
contains_answer))
return candidates
def has_long_answer(json_example):
for annotation in json_example['annotations']:
if annotation['long_answer']['start_byte'] >= 0:
return True
return False
def has_short_answer(json_example):
for annotation in json_example['annotations']:
if annotation['short_answers']:
return True
return False
def load_examples(fileobj):
"""Reads jsonlines containing NQ examples.
Args:
fileobj: File object containing NQ examples.
Returns:
Dictionary mapping example id to `Example` object.
"""
def _load(examples, f):
"""Read serialized json from `f`, create examples, and add to `examples`."""
for l in f:
json_example = json.loads(l)
if FLAGS.mode == 'long_answers' and not has_long_answer(json_example):
continue
elif FLAGS.mode == 'short_answers' and not has_short_answer(json_example):
continue
example = Example(json_example)
examples[example.example_id] = example
if len(examples) == FLAGS.max_examples:
break
examples = {}
if FLAGS.gzipped:
_load(examples, gzip.GzipFile(fileobj=fileobj))
else:
_load(examples, fileobj)
return examples
class MainHandler(tornado.web.RequestHandler):
"""Displays an overview table of the loaded NQ examples."""
def initialize(self, jinja2_env, examples):
self.env = jinja2_env
self.tmpl = self.env.get_template('index.html')
self.examples = examples
def get(self):
res = self.tmpl.render(
dataset=FLAGS.dataset.capitalize(), examples=self.examples.values())
self.write(res)
class HtmlHandler(tornado.web.RequestHandler):
"""Displays the html field contained in a NQ example."""
def initialize(self, examples):
self.examples = examples
def get(self):
example_id = str(self.get_argument('example_id'))
self.write(self.examples[example_id].document_html)
class FeaturesHandler(tornado.web.RequestHandler):
"""Displays a detailed view of the features extracted from a NQ example."""
def initialize(self, jinja2_env, examples):
self.env = jinja2_env
self.tmpl = self.env.get_template('features.html')
self.examples = examples
def get(self):
example_id = str(self.get_argument('example_id'))
res = self.tmpl.render(
dataset=FLAGS.dataset.capitalize(), example=self.examples[example_id])
self.write(res)
class NqServer(object):
"""Serves all different tools."""
def __init__(self, web_path, examples):
"""
"""
tmpl_path = web_path + '/templates'
static_path = web_path + '/static'
jinja2_env = jinja2.Environment(loader=jinja2.FileSystemLoader(tmpl_path))
self.application = tornado.wsgi.WSGIApplication([
(r'/', MainHandler, {
'jinja2_env': jinja2_env,
'examples': examples
}),
(r'/html', HtmlHandler, {
'examples': examples
}),
(r'/features', FeaturesHandler, {
'jinja2_env': jinja2_env,
'examples': examples
}),
(r'/static/(.*)', tornado.web.StaticFileHandler, {
'path': static_path
}),
])
def serve(self):
"""Main entry point for the NqSever."""
server = wsgiref.simple_server.make_server('', FLAGS.port, self.application)
server.serve_forever()
def main(unused_argv):
with open(FLAGS.nq_jsonl) as fileobj:
examples = load_examples(fileobj)
web_path = os.path.dirname(os.path.realpath(__file__))
NqServer(web_path, examples).serve()
if __name__ == '__main__':
app.run(main)