diff --git a/README.md b/README.md index 30784f929..da8f792a0 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,76 @@ # BERT +**\*\*\*\*\* New March 11th, 2020: Smaller BERT Models \*\*\*\*\*** + +This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece masking) referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962). + +We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. + +Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. + +You can download all 24 from [here][all], or individually from the table below: + +| |H=128|H=256|H=512|H=768| +|---|:---:|:---:|:---:|:---:| +| **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| +| **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| +| **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| +| **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| +| **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| +| **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| + +Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. + +Here are the corresponding GLUE scores on the test set: + +|Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| +|---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| +|BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| +|BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| +|BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| +|BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| + +For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: +- batch sizes: 8, 16, 32, 64, 128 +- learning rates: 3e-4, 1e-4, 5e-5, 3e-5 + +If you use these models, please cite the following paper: + +``` +@article{turc2019, + title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, + author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, + journal={arXiv preprint arXiv:1908.08962v2 }, + year={2019} +} +``` + +[2_128]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-128_A-2.zip +[2_256]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-256_A-4.zip +[2_512]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-512_A-8.zip +[2_768]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-768_A-12.zip +[4_128]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-128_A-2.zip +[4_256]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-256_A-4.zip +[4_512]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-512_A-8.zip +[4_768]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-4_H-768_A-12.zip +[6_128]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-6_H-128_A-2.zip +[6_256]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-6_H-256_A-4.zip +[6_512]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-6_H-512_A-8.zip +[6_768]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-6_H-768_A-12.zip +[8_128]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-8_H-128_A-2.zip +[8_256]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-8_H-256_A-4.zip +[8_512]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-8_H-512_A-8.zip +[8_768]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-8_H-768_A-12.zip +[10_128]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-10_H-128_A-2.zip +[10_256]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-10_H-256_A-4.zip +[10_512]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-10_H-512_A-8.zip +[10_768]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-10_H-768_A-12.zip +[12_128]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-128_A-2.zip +[12_256]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-256_A-4.zip +[12_512]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-512_A-8.zip +[12_768]: https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip +[all]: https://storage.googleapis.com/bert_models/2020_02_20/all_bert_models.zip + **\*\*\*\*\* New May 31st, 2019: Whole Word Masking Models \*\*\*\*\*** This is a release of several new models which were the result of an improvement