-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathmain.go
463 lines (362 loc) · 13.1 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
package main
import (
"fmt"
"io"
"net/http"
"os"
"runtime"
"sync"
"time"
"github.com/google/uuid"
flags "github.com/jessevdk/go-flags"
colorable "github.com/mattn/go-colorable"
"github.com/mitchellh/colorstring"
"github.com/pkg/profile"
"github.com/gotzmann/llama.go/pkg/llama"
"github.com/gotzmann/llama.go/pkg/server"
)
const VERSION = "1.4.0"
type Options struct {
Prompt string `long:"prompt" description:"Text prompt from user to feed the model input"`
Model string `long:"model" description:"Path and file name of converted .bin LLaMA model [ llama-7b-fp32.bin, etc ]"`
Server bool `long:"server" description:"Start in Server Mode acting as REST API endpoint"`
Host string `long:"host" description:"Host to allow requests from in Server Mode [ localhost by default ]"`
Port string `long:"port" description:"Port listen to in Server Mode [ 8080 by default ]"`
Pods int64 `long:"pods" description:"Maximum pods or units of parallel execution allowed in Server Mode [ 1 by default ]"`
Threads int `long:"threads" description:"Max number of CPU cores you allow to use for one pod [ all cores by default ]"`
Context uint32 `long:"context" description:"Context size in tokens [ 1024 by default ]"`
Predict uint32 `long:"predict" description:"Number of tokens to predict [ 512 by default ]"`
Temp float32 `long:"temp" description:"Model temperature hyper parameter [ 0.50 by default ]"`
Silent bool `long:"silent" description:"Hide welcome logo and other output [ shown by default ]"`
Chat bool `long:"chat" description:"Chat with user in interactive mode instead of compute over static prompt"`
Dir string `long:"dir" description:"Directory used to download .bin model specified with --model parameter [ current by default ]"`
Profile bool `long:"profile" description:"Profe CPU performance while running and store results to cpu.pprof file"`
UseAVX bool `long:"avx" description:"Enable x64 AVX2 optimizations for Intel and AMD machines"`
UseNEON bool `long:"neon" description:"Enable ARM NEON optimizations for Apple and ARM machines"`
}
func main() {
opts := parseOptions()
if opts.Profile {
defer profile.Start(profile.ProfilePath(".")).Stop()
}
if !opts.Silent {
showLogo()
}
// --- special command to load model file
if len(os.Args) > 1 && os.Args[1] == "load" {
Colorize("[magenta][ LOAD ][light_blue] Downloading model [light_magenta]%s[light_blue] into [light_magenta]%s[light_blue]", opts.Model, opts.Dir)
size, err := downloadModel(opts.Dir, opts.Model)
if err != nil {
Colorize("\n[magenta][ ERROR ][light_blue] Model [light_magenta]%s[light_blue] was not downloaded: [light_red]%s!\n\n", opts.Model, err.Error())
} else {
Colorize("\n[magenta][ LOAD ][light_blue] Model [light_magenta]%s[light_blue] of size [light_magenta]%d Gb[light_blue] was successfully downloaded!\n\n", opts.Model, size/1024/1024/1024)
}
os.Exit(0)
}
// --- set model parameters from user settings and safe defaults
params := &llama.ModelParams{
Model: opts.Model,
MaxThreads: opts.Threads,
UseAVX: opts.UseAVX,
UseNEON: opts.UseNEON,
Interactive: opts.Chat,
CtxSize: opts.Context,
Seed: -1,
PredictCount: opts.Predict,
RepeatLastN: opts.Context, // TODO: Research on best value
PartsCount: -1,
BatchSize: opts.Context, // TODO: What's the better size?
TopK: 40,
TopP: 0.95,
Temp: opts.Temp,
RepeatPenalty: 1.10,
MemoryFP16: true,
}
// --- load the model and vocab
vocab, model, err := llama.LoadModel(params.Model, params, opts.Silent)
if err != nil {
Colorize("\n[magenta][ ERROR ][white] Failed to load model [light_magenta]\"%s\"\n\n", params.Model)
os.Exit(0)
}
// --- set up internal REST server
server.MaxPods = opts.Pods
server.Host = opts.Host
server.Port = opts.Port
server.Vocab = vocab
server.Model = model
server.Params = params
go server.Run()
if !opts.Silent && opts.Server {
Colorize("\n[light_magenta][ INIT ][light_blue] REST server ready on [light_magenta]%s:%s", opts.Host, opts.Port)
}
// --- wait for API calls as REST server, or compute just the one prompt from user CLI
// TODO: Control signals between main() and server
var wg sync.WaitGroup
wg.Add(1)
if opts.Server {
wg.Wait()
} else {
// add a space to match LLaMA tokenizer behavior
prompt := " " + opts.Prompt
jobID := uuid.New().String()
server.PlaceJob(jobID, prompt)
output := ""
//Colorize("\n\n[magenta]▒▒▒[light_yellow]" + prompt + "\n[light_blue]▒▒▒ ")
Colorize("\n\n[magenta][ PROMPT ][light_magenta]" + prompt + "\n[light_blue][ OUTPUT ][white]")
for {
time.Sleep(100 * time.Millisecond)
if output != server.Jobs[jobID].Output {
diff := server.Jobs[jobID].Output[len(output):]
fmt.Printf(diff)
output += diff
}
if server.Jobs[jobID].Status == "finished" {
break
}
}
os.Exit(0)
}
/*
// tokenize the prompt
embdInp := ml.Tokenize(ctx.Vocab, prompt, true)
var embd []uint32
// Initialize the ring buffer
lastNTokens := ring.New(int(params.CtxSize))
for i := 0; i < int(params.CtxSize); i++ {
lastNTokens.Value = uint32(0)
lastNTokens = lastNTokens.Next()
}
// A function to append a token to the ring buffer
appendToken := func(token uint32) {
lastNTokens.Value = token
lastNTokens = lastNTokens.Next()
}
inputNoEcho := false
pastCount := uint32(0)
remainCount := params.PredictCount
consumedCount := uint32(0)
tokenCounter := 0
evalPerformance := make([]int64, 0, params.PredictCount)
fullPerformance := make([]int64, 0, params.PredictCount)
*/ /*
for remainCount != 0 || params.Interactive {
start := time.Now().UnixNano()
// --- predict
if len(embd) > 0 {
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
if pastCount+uint32(len(embd)) > params.CtxSize {
leftCount := pastCount - params.KeepCount
pastCount = params.KeepCount
// insert n_left/2 tokens at the start of embd from last_n_tokens
//embd = append(lastNTokens[:leftCount/2], embd...)
embd = append(llama.ExtractTokens(lastNTokens.Move(-int(leftCount/2)), int(leftCount/2)), embd...)
}
evalStart := time.Now().UnixNano()
if err := llama.Eval(ctx, embd, pastCount, params); err != nil {
fmt.Printf("\n[ERROR] Failed to eval")
os.Exit(1)
}
evalPerformance = append(evalPerformance, time.Now().UnixNano()-evalStart)
}
pastCount += uint32(len(embd))
embd = []uint32{}
if len(embdInp) <= int(consumedCount) { // && !isInteracting {
if params.IgnoreEOS {
ctx.Logits[ml.TOKEN_EOS] = 0
}
//id := llama.SampleTopPTopK(ctx,
// lastNTokens[params.ctxSize-params.repeatLastN:], params.repeatLastN,
// params.topK, params.topP, params.temp, params.repeatPenalty)
//
//lastNTokens = lastNTokens[1:] ////last_n_tokens.erase(last_n_tokens.begin());
//lastNTokens = append(lastNTokens, id)
id := llama.SampleTopPTopK(ctx,
lastNTokens, params.RepeatLastN,
params.TopK, params.TopP, params.Temp, params.RepeatPenalty)
appendToken(id)
// replace end of text token with newline token when in interactive mode
if id == ml.TOKEN_EOS && params.Interactive && !params.Instruct {
id = ml.NewLineToken
}
// add it to the context
embd = append(embd, id)
// echo this to console
inputNoEcho = false
// decrement remaining sampling budget
remainCount--
} else {
// some user input remains from prompt or interaction, forward it to processing
//for len(embdInp) > int(consumedCount) {
// embd = append(embd, embdInp[consumedCount])
// if len(lastNTokens) > 0 {
// lastNTokens = lastNTokens[1:]
// }
// lastNTokens = append(lastNTokens, embdInp[consumedCount])
// consumedCount++
// if len(embd) >= int(params.batchSize) {
// break
// }
//}
for len(embdInp) > int(consumedCount) {
embd = append(embd, embdInp[consumedCount])
appendToken(embdInp[consumedCount])
consumedCount++
if len(embd) >= int(params.BatchSize) {
break
}
}
}
// --- display text
if !inputNoEcho {
for _, id := range embd {
token := ml.Token2Str(ctx.Vocab, id)
final += token
if len(strings.TrimSpace(final)) < len(strings.TrimSpace(prompt)) {
continue
}
out := strings.Split(final, prompt)
if len(out) == 2 && token == "\n" {
continue
}
if len(strings.TrimSpace(final)) == len(strings.TrimSpace(prompt)) && (token != "\n") && (len(out) == 2) {
Colorize("\n\n[magenta]▒▒▒ [light_yellow]" + strings.TrimSpace(prompt) + "\n[light_blue]▒▒▒ ")
continue
}
Colorize("[white]" + token)
tokenCounter++
fullPerformance = append(fullPerformance, time.Now().UnixNano()-start)
if ml.DEBUG {
fmt.Printf(" [ #%d | %d ] ", tokenCounter, fullPerformance[len(fullPerformance)-1]/1_000_000)
}
}
}
}
if ml.DEBUG {
//Colorize("\n\n=== TOKEN EVAL TIMINGS ===\n\n")
//for _, time := range evalPerformance {
// Colorize("%d | ", time/1_000_000)
//}
Colorize("\n\n=== FULL TIMINGS ===\n\n")
for _, time := range fullPerformance {
Colorize("%d | ", time/1_000_000)
}
}
avgEval := int64(0)
for _, time := range fullPerformance {
avgEval += time / 1_000_000
}
avgEval /= int64(len(fullPerformance))
Colorize(
"\n\n[light_magenta][ HALT ][white] Time per token: [light_cyan]%d[white] ms | Tokens per second: [light_cyan]%.2f\n\n",
avgEval,
float64(1000)/float64(avgEval))
*/
}
func parseOptions() *Options {
var opts Options
_, err := flags.Parse(&opts)
if err != nil {
Colorize("\n[magenta][ ERROR ][white] Can't parse options from command line!\n\n")
os.Exit(0)
}
if opts.Model == "" {
Colorize("\n[magenta][ ERROR ][white] Please specify correct model path with [light_magenta]--model[white] parameter!\n\n")
os.Exit(0)
}
if opts.Server == false && opts.Prompt == "" && len(os.Args) > 1 && os.Args[1] != "load" {
Colorize("\n[magenta][ ERROR ][white] Please specify correct prompt with [light_magenta]--prompt[white] parameter!\n\n")
os.Exit(0)
}
if opts.Pods == 0 {
opts.Pods = 1
}
// Allow to use ALL cores for the program itself and CLI specified number of cores for the parallel tensor math
// TODO Optimize default settings for CPUs with P and E cores like M1 Pro = 8 performant and 2 energy cores
if opts.Threads == 0 {
opts.Threads = runtime.NumCPU()
}
if opts.Host == "" {
opts.Host = "localhost"
}
if opts.Port == "" {
opts.Port = "8080"
}
if opts.Context == 0 {
opts.Context = 1024
}
if opts.Predict == 0 {
opts.Predict = 512
}
if opts.Temp == 0 {
opts.Temp = 0.5
}
return &opts
}
// Colorize is a wrapper for colorstring.Color() and fmt.Fprintf()
// Join colorstring and go-colorable to allow colors both on Mac and Windows
// TODO: Implement as a small library
func Colorize(format string, opts ...interface{}) (n int, err error) {
var DefaultOutput = colorable.NewColorableStdout()
return fmt.Fprintf(DefaultOutput, colorstring.Color(format), opts...)
}
func showLogo() {
// https://patorjk.com/software/taag/#p=display&f=3-D&t=llama.go%0A%0ALLaMA.go
// Isometric 1, Modular, Rectangles, Rozzo, Small Isometric 1, 3-D
logo := `
/88 /88 /888/888 /88/8888/88 /888/888 /8888/88 /888/888
/888 /888 /888/ /888 /888/8888/888 /888/ /888 /8888 // /8888//888
/8888/88 /8888/88 /8888/8888 /888/8888/888 /8888/8888 /88 /8888/8888 /888 /8888
/8888/888 /8888/888 /888 /8888 /888//88 /888 /888 /8888 /888//8888/88 //888/888
//// /// //// /// /// //// /// // /// /// //// /// //// // /// ///`
logoColored := ""
prevColor := ""
color := ""
line := 0
colors := []string{"[black]", "[light_blue]", "[magenta]", "[light_magenta]", "[light_blue]"}
for _, char := range logo {
if char == '\n' {
line++
} else if char == '/' {
color = "[blue]"
} else if char == '8' {
color = colors[line]
char = '▒'
}
if color == prevColor {
logoColored += string(char)
} else {
logoColored += color + string(char)
}
}
Colorize(logoColored)
Colorize(
"\n\n [magenta]▒▒▒▒[light_magenta] [ LLaMA.go v" +
VERSION +
" ] [light_blue][ LLaMA GPT in pure Golang - based on LLaMA C++ ] [magenta]▒▒▒▒\n\n")
}
func downloadModel(dir, model string) (int64, error) {
url := "https://nogpu.com/" + model
file := dir + "/" + model
// TODO: check file existence first with io.IsExist
output, err := os.Create(file)
if err != nil {
return 0, err
}
defer output.Close()
response, err := http.Get(url)
if err != nil {
return 0, err
}
defer response.Body.Close()
n, err := io.Copy(output, response.Body)
if err != nil {
return 0, err
}
if n < 1_000_000 {
return 0, fmt.Errorf("some problem with target file")
}
return n, nil
}